logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.quantification

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Lambda
from proveit.core_expr_types import P__x_1_to_n, x_1_to_n
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([x_1_to_n], P__x_1_to_n))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mapsto P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 4
body: 2
2Operationoperator: 3
operands: 4
3Variable
4ExprTuple5
5ExprRangelambda_map: 6
start_index: 7
end_index: 8
6Lambdaparameter: 12
body: 9
7Literal
8Variable
9IndexedVarvariable: 10
index: 12
10Variable
11ExprTuple12
12Variable