logo

Expression of type Lambda

from the theory of proveit.logic.booleans.negation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, Lambda
from proveit.logic import And, Boolean, InSet, Not
In [2]:
# build up the expression from sub-expressions
expr = Lambda(A, Conditional(A, And(InSet(A, Boolean), Not(Not(A)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
A \mapsto \left\{A \textrm{ if } A \in \mathbb{B} ,  \lnot (\lnot A)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 14
body: 1
1Conditionalvalue: 14
condition: 2
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operands: 8
6Operationoperator: 12
operand: 11
7Literal
8ExprTuple14, 10
9ExprTuple11
10Literal
11Operationoperator: 12
operand: 14
12Literal
13ExprTuple14
14Variable