logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.implication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Conditional, ExprTuple, Lambda
from proveit.logic import And, Boolean, Implies, InSet, Not
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([A, B], Conditional(Implies(B, Not(A)), And(Implies(A, Not(B)), InSet(A, Boolean)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(A, B\right) \mapsto \left\{B \Rightarrow (\lnot A) \textrm{ if } A \Rightarrow (\lnot B) ,  A \in \mathbb{B}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 2
body: 3
2ExprTuple18, 22
3Conditionalvalue: 4
condition: 5
4Operationoperator: 13
operands: 6
5Operationoperator: 7
operands: 8
6ExprTuple22, 9
7Literal
8ExprTuple10, 11
9Operationoperator: 20
operand: 18
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple18
13Literal
14ExprTuple18, 17
15Literal
16ExprTuple18, 19
17Operationoperator: 20
operand: 22
18Variable
19Literal
20Literal
21ExprTuple22
22Variable