logo

Expression of type Lambda

from the theory of proveit.logic.booleans.implication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, C, Conditional, Lambda
from proveit.logic import And, Iff
In [2]:
# build up the expression from sub-expressions
expr = Lambda([A, B, C], Conditional(Iff(A, C), And(Iff(A, B), Iff(B, C))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A, B, C\right) \mapsto \left\{A \Leftrightarrow C \textrm{ if } A \Leftrightarrow B ,  B \Leftrightarrow C\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple13, 14, 15
2Conditionalvalue: 3
condition: 4
3Operationoperator: 11
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple13, 15
6Literal
7ExprTuple8, 9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13, 14
11Literal
12ExprTuple14, 15
13Variable
14Variable
15Variable