logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.implication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Conditional, ExprTuple, Lambda
from proveit.logic import And, Iff, Implies
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([A, B], Conditional(Iff(A, B), And(Implies(A, B), Implies(B, A)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(A, B\right) \mapsto \left\{A \Leftrightarrow B \textrm{ if } A \Rightarrow B ,  B \Rightarrow A\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 10
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 10
4Operationoperator: 6
operands: 7
5Literal
6Literal
7ExprTuple8, 9
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple14, 13
11Literal
12ExprTuple13, 14
13Variable
14Variable