logo

Expression of type Conditional

from the theory of proveit.logic.booleans.implication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Conditional
from proveit.logic import And, Implies, Not
In [2]:
# build up the expression from sub-expressions
expr = Conditional(A, And(Implies(Not(A), B), Not(B)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{A \textrm{ if } (\lnot A) \Rightarrow B ,  \lnot B\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 13
condition: 1
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4Operationoperator: 6
operands: 7
5Operationoperator: 11
operand: 10
6Literal
7ExprTuple9, 10
8ExprTuple10
9Operationoperator: 11
operand: 13
10Variable
11Literal
12ExprTuple13
13Variable