logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.implication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, ExprTuple, Lambda
from proveit.logic import And, Equals, Iff, Implies
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([A, B], Equals(Iff(A, B), And(Implies(A, B), Implies(B, A)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(A, B\right) \mapsto \left(\left(A \Leftrightarrow B\right) = \left(\left(A \Rightarrow B\right) \land \left(B \Rightarrow A\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 12
body: 2
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operands: 12
6Operationoperator: 8
operands: 9
7Literal
8Literal
9ExprTuple10, 11
10Operationoperator: 13
operands: 12
11Operationoperator: 13
operands: 14
12ExprTuple16, 15
13Literal
14ExprTuple15, 16
15Variable
16Variable