logo

Expression of type Lambda

from the theory of proveit.logic.booleans.disjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, C, Conditional, Lambda
from proveit.logic import And, Boolean, Implies, InSet, Or
In [2]:
# build up the expression from sub-expressions
expr = Lambda([A, B, C], Conditional(C, And(InSet(A, Boolean), InSet(B, Boolean), InSet(C, Boolean), Or(A, B), Implies(A, C), Implies(B, C))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A, B, C\right) \mapsto \left\{C \textrm{ if } A \in \mathbb{B} ,  B \in \mathbb{B} ,  C \in \mathbb{B} ,  A \lor B ,  A \Rightarrow C ,  B \Rightarrow C\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple22, 23, 24
2Conditionalvalue: 24
condition: 3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7, 8, 9, 10, 11
6Operationoperator: 14
operands: 12
7Operationoperator: 14
operands: 13
8Operationoperator: 14
operands: 15
9Operationoperator: 16
operands: 17
10Operationoperator: 19
operands: 18
11Operationoperator: 19
operands: 20
12ExprTuple22, 21
13ExprTuple23, 21
14Literal
15ExprTuple24, 21
16Literal
17ExprTuple22, 23
18ExprTuple22, 24
19Literal
20ExprTuple23, 24
21Literal
22Variable
23Variable
24Variable