logo

Expression of type Lambda

from the theory of proveit.logic.booleans.disjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, C, Conditional, Lambda
from proveit.logic import And, Implies
In [2]:
# build up the expression from sub-expressions
expr = Lambda(C, Conditional(C, And(Implies(A, C), Implies(B, C))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
C \mapsto \left\{C \textrm{ if } A \Rightarrow C ,  B \Rightarrow C\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 13
body: 2
1ExprTuple13
2Conditionalvalue: 13
condition: 3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Operationoperator: 9
operands: 8
7Operationoperator: 9
operands: 10
8ExprTuple11, 13
9Literal
10ExprTuple12, 13
11Variable
12Variable
13Variable