logo

Expression of type Lambda

from the theory of proveit.logic.booleans.disjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Conditional, Lambda
from proveit.logic import And, Boolean, InSet, Not, Or
In [2]:
# build up the expression from sub-expressions
expr = Lambda([A, B], Conditional(Or(A, B), And(InSet(A, Boolean), InSet(B, Boolean), Not(And(Not(A), Not(B))))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A, B\right) \mapsto \left\{A \lor B \textrm{ if } A \in \mathbb{B} ,  B \in \mathbb{B} ,  \lnot \left((\lnot A) \land (\lnot B)\right)\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 5
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 16
operands: 6
4Literal
5ExprTuple23, 24
6ExprTuple7, 8, 9
7Operationoperator: 11
operands: 10
8Operationoperator: 11
operands: 12
9Operationoperator: 21
operand: 15
10ExprTuple23, 14
11Literal
12ExprTuple24, 14
13ExprTuple15
14Literal
15Operationoperator: 16
operands: 17
16Literal
17ExprTuple18, 19
18Operationoperator: 21
operand: 23
19Operationoperator: 21
operand: 24
20ExprTuple23
21Literal
22ExprTuple24
23Variable
24Variable