logo

Expression of type Lambda

from the theory of proveit.logic.booleans.disjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda
from proveit.core_expr_types import A_1_to_m
from proveit.logic import And, Or
In [2]:
# build up the expression from sub-expressions
expr = Lambda([A_1_to_m], Conditional(Or(A_1_to_m), And(A_1_to_m)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A_{1}, A_{2}, \ldots, A_{m}\right) \mapsto \left\{A_{1} \lor  A_{2} \lor  \ldots \lor  A_{m} \textrm{ if } A_{1} \land  A_{2} \land  \ldots \land  A_{m}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 6
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 6
3Operationoperator: 5
operands: 6
4Literal
5Literal
6ExprTuple7
7ExprRangelambda_map: 8
start_index: 9
end_index: 10
8Lambdaparameter: 14
body: 11
9Literal
10Variable
11IndexedVarvariable: 12
index: 14
12Variable
13ExprTuple14
14Variable