logo

Expression of type Lambda

from the theory of proveit.logic.booleans.disjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Conditional, Lambda
from proveit.logic import Boolean, InSet, Or
In [2]:
# build up the expression from sub-expressions
expr = Lambda([A, B], Conditional(InSet(A, Boolean), InSet(Or(A, B), Boolean)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A, B\right) \mapsto \left\{A \in \mathbb{B} \textrm{ if } \left(A \lor B\right) \in \mathbb{B}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 10
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 5
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple11, 8
5Literal
6ExprTuple7, 8
7Operationoperator: 9
operands: 10
8Literal
9Literal
10ExprTuple11, 12
11Variable
12Variable