logo

Expression of type Lambda

from the theory of proveit.logic.booleans.disjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, Conditional, IndexedVar, Lambda
from proveit.logic import Boolean, InSet
from proveit.numbers import one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = IndexedVar(A, one)
sub_expr2 = InSet(sub_expr1, Boolean)
expr = Lambda(sub_expr1, Conditional(sub_expr2, sub_expr2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
A_{1} \mapsto \left\{A_{1} \in \mathbb{B} \textrm{ if } A_{1} \in \mathbb{B}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 6
body: 2
1ExprTuple6
2Conditionalvalue: 3
condition: 3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6IndexedVarvariable: 8
index: 10
7Literal
8Variable
9ExprTuple10
10Literal