logo

Expression of type Lambda

from the theory of proveit.logic.booleans.conjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda
from proveit.core_expr_types import A_1_to_m
from proveit.logic import And, Equals, TRUE
In [2]:
# build up the expression from sub-expressions
sub_expr1 = And(A_1_to_m)
expr = Lambda([A_1_to_m], Conditional(Equals(sub_expr1, TRUE), sub_expr1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A_{1}, A_{2}, \ldots, A_{m}\right) \mapsto \left\{\left(A_{1} \land  A_{2} \land  \ldots \land  A_{m}\right) = \top \textrm{ if } A_{1} \land  A_{2} \land  \ldots \land  A_{m}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 8
body: 1
1Conditionalvalue: 2
condition: 5
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 7
operands: 8
6Literal
7Literal
8ExprTuple9
9ExprRangelambda_map: 10
start_index: 11
end_index: 12
10Lambdaparameter: 16
body: 13
11Literal
12Variable
13IndexedVarvariable: 14
index: 16
14Variable
15ExprTuple16
16Variable