logo

Expression of type ExprTuple

from the theory of proveit.logic.booleans.conjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import B, Conditional, ExprTuple, Lambda
from proveit.core_expr_types import A_1_to_m, C_1_to_n
from proveit.logic import And
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([A_1_to_m, B, C_1_to_n], Conditional(B, And(A_1_to_m, B, C_1_to_n))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(A_{1}, A_{2}, \ldots, A_{m}, B, C_{1}, C_{2}, \ldots, C_{n}\right) \mapsto \left\{B \textrm{ if } A_{1} ,  A_{2} ,  \ldots ,  A_{m} ,  B, C_{1} ,  C_{2} ,  \ldots ,  C_{n}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 5
body: 2
2Conditionalvalue: 7
condition: 3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7, 8
6ExprRangelambda_map: 9
start_index: 12
end_index: 10
7Variable
8ExprRangelambda_map: 11
start_index: 12
end_index: 13
9Lambdaparameter: 19
body: 14
10Variable
11Lambdaparameter: 19
body: 15
12Literal
13Variable
14IndexedVarvariable: 16
index: 19
15IndexedVarvariable: 17
index: 19
16Variable
17Variable
18ExprTuple19
19Variable