logo

Expression of type Lambda

from the theory of proveit.logic.booleans.conjunction

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, m
from proveit.core_expr_types import A_1_to_m
from proveit.logic import And, Forall, InSet
from proveit.numbers import Natural
In [2]:
# build up the expression from sub-expressions
expr = Lambda(m, Conditional(Forall(instance_param_or_params = [A_1_to_m], instance_expr = And(A_1_to_m), condition = A_1_to_m), InSet(m, Natural)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
m \mapsto \left\{\forall_{A_{1}, A_{2}, \ldots, A_{m}~|~A_{1}, A_{2}, \ldots, A_{m}}~\left(A_{1} \land  A_{2} \land  \ldots \land  A_{m}\right) \textrm{ if } m \in \mathbb{N}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 18
body: 2
1ExprTuple18
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operand: 9
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9
7Literal
8ExprTuple18, 10
9Lambdaparameters: 14
body: 11
10Literal
11Conditionalvalue: 12
condition: 12
12Operationoperator: 13
operands: 14
13Literal
14ExprTuple15
15ExprRangelambda_map: 16
start_index: 17
end_index: 18
16Lambdaparameter: 22
body: 19
17Literal
18Variable
19IndexedVarvariable: 20
index: 22
20Variable
21ExprTuple22
22Variable