logo
In [1]:
import proveit
from proveit import defaults
from proveit.logic.booleans  import bools_def
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving unfold_is_bool_explicit
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
unfold_is_bool_explicit:
(see dependencies)
In [3]:
Ain_bool = unfold_is_bool_explicit.conditions[0]
Ain_bool:
In [4]:
defaults.assumptions = [Ain_bool]
defaults.assumptions:
In [5]:
bools_def
In [6]:
AinTFset = bools_def.sub_right_side_into(Ain_bool)
AinTFset:  ⊢  
unfold_is_bool_explicit may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [7]:
AinTFset.unfold()
In [8]:
%qed # unfolding the enumerated set via automation
proveit.logic.booleans.unfold_is_bool_explicit has been proven.
Out[8]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4, 5  ⊢  
  : , : , :
2conjecture  ⊢  
 proveit.logic.sets.enumeration.unfold
3conjecture  ⊢  
 proveit.numbers.numerals.decimals.nat2
4instantiation6  ⊢  
  : , :
5instantiation7, 8, 9  ⊢  
  : , : , :
6conjecture  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
7theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
8assumption  ⊢  
9axiom  ⊢  
 proveit.logic.booleans.bools_def