logo

Expression of type Conditional

from the theory of proveit.linear_algebra.vector_sets

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, V, n
from proveit.core_expr_types import x_1_to_n
from proveit.linear_algebra import Bases, Dim
from proveit.logic import Equals, InSet, Set
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Equals(Dim(V), n), InSet(Set(x_1_to_n), Bases(V)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\textrm{Dim}\left(V\right) = n \textrm{ if } \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \in \textrm{Bases}\left(V\right)\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 19
5Literal
6ExprTuple8, 9
7Operationoperator: 10
operand: 16
8Operationoperator: 11
operands: 12
9Operationoperator: 13
operand: 16
10Literal
11Literal
12ExprTuple15
13Literal
14ExprTuple16
15ExprRangelambda_map: 17
start_index: 18
end_index: 19
16Variable
17Lambdaparameter: 23
body: 20
18Literal
19Variable
20IndexedVarvariable: 21
index: 23
21Variable
22ExprTuple23
23Variable