logo

Expression of type Conditional

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprRange, IndexedVar, K, Variable, m, n
from proveit.core_expr_types import n_1_to_m
from proveit.linear_algebra import TensorProd
from proveit.logic import And, CartExp, InSet, SubsetEq
from proveit.numbers import Mult, NaturalPos, one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
sub_expr2 = IndexedVar(n, sub_expr1)
expr = Conditional(SubsetEq(TensorProd(ExprRange(sub_expr1, CartExp(K, sub_expr2), one, m)), CartExp(K, Mult(n_1_to_m))), And(ExprRange(sub_expr1, InSet(sub_expr2, NaturalPos), one, m)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\left(K^{n_{1}} {\otimes}  K^{n_{2}} {\otimes}  \ldots {\otimes}  K^{n_{m}}\right) \subseteq K^{n_{1} \cdot  n_{2} \cdot  \ldots \cdot  n_{m}} \textrm{ if } \left(n_{1} \in \mathbb{N}^+\right) \land  \left(n_{2} \in \mathbb{N}^+\right) \land  \ldots \land  \left(n_{m} \in \mathbb{N}^+\right)\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 8
5Literal
6ExprTuple9
7Operationoperator: 10
operands: 11
8Operationoperator: 25
operands: 12
9ExprRangelambda_map: 13
start_index: 28
end_index: 29
10Literal
11ExprTuple14
12ExprTuple30, 15
13Lambdaparameter: 34
body: 16
14ExprRangelambda_map: 17
start_index: 28
end_index: 29
15Operationoperator: 18
operands: 19
16Operationoperator: 20
operands: 21
17Lambdaparameter: 34
body: 22
18Literal
19ExprTuple23
20Literal
21ExprTuple31, 24
22Operationoperator: 25
operands: 26
23ExprRangelambda_map: 27
start_index: 28
end_index: 29
24Literal
25Literal
26ExprTuple30, 31
27Lambdaparameter: 34
body: 31
28Literal
29Variable
30Variable
31IndexedVarvariable: 32
index: 34
32Variable
33ExprTuple34
34Variable