logo

Expression of type Forall

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import K
from proveit.core_expr_types import A_1_to_i, B_1_to_j, C_1_to_k
from proveit.linear_algebra import TensorProd, VecSpaces
from proveit.logic import Equals, Forall
In [2]:
# build up the expression from sub-expressions
expr = Forall(instance_param_or_params = [A_1_to_i, B_1_to_j, C_1_to_k], instance_expr = Equals(TensorProd(A_1_to_i, TensorProd(B_1_to_j), C_1_to_k), TensorProd(A_1_to_i, B_1_to_j, C_1_to_k)).with_wrapping_at(1), domain = VecSpaces(K)).with_wrapping()
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{l}\forall_{A_{1}, A_{2}, \ldots, A_{i}, B_{1}, B_{2}, \ldots, B_{j}, C_{1}, C_{2}, \ldots, C_{k} \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(K\right)}~\\
\left(\begin{array}{c} \begin{array}{l} \left(A_{1} {\otimes}  A_{2} {\otimes}  \ldots {\otimes}  A_{i} {\otimes} \left(B_{1} {\otimes}  B_{2} {\otimes}  \ldots {\otimes}  B_{j}\right){\otimes} C_{1} {\otimes}  C_{2} {\otimes}  \ldots {\otimes}  C_{k}\right) \\  = \left(A_{1} {\otimes}  A_{2} {\otimes}  \ldots {\otimes}  A_{i}{\otimes} B_{1} {\otimes}  B_{2} {\otimes}  \ldots {\otimes}  B_{j}{\otimes} C_{1} {\otimes}  C_{2} {\otimes}  \ldots {\otimes}  C_{k}\right) \end{array} \end{array}\right)\end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
with_wrappingIf 'True', wrap the Expression after the parametersNoneTrue('with_wrapping',)
condition_wrappingWrap 'before' or 'after' the condition (or None).NoneNone/False('with_wrap_after_condition', 'with_wrap_before_condition')
wrap_paramsIf 'True', wraps every two parameters AND wraps the Expression after the parametersNoneNone/False('with_params',)
justificationjustify to the 'left', 'center', or 'right' in the array cellscentercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operand: 3
1Literal
2ExprTuple3
3Lambdaparameters: 17
body: 4
4Conditionalvalue: 5
condition: 6
5Operationoperator: 7
operands: 8
6Operationoperator: 9
operands: 10
7Literal
8ExprTuple11, 12
9Literal
10ExprTuple13, 14, 15
11Operationoperator: 27
operands: 16
12Operationoperator: 27
operands: 17
13ExprRangelambda_map: 18
start_index: 42
end_index: 30
14ExprRangelambda_map: 19
start_index: 42
end_index: 43
15ExprRangelambda_map: 20
start_index: 42
end_index: 32
16ExprTuple22, 21, 23
17ExprTuple22, 37, 23
18Lambdaparameter: 52
body: 24
19Lambdaparameter: 52
body: 25
20Lambdaparameter: 52
body: 26
21Operationoperator: 27
operands: 28
22ExprRangelambda_map: 29
start_index: 42
end_index: 30
23ExprRangelambda_map: 31
start_index: 42
end_index: 32
24Operationoperator: 35
operands: 33
25Operationoperator: 35
operands: 34
26Operationoperator: 35
operands: 36
27Literal
28ExprTuple37
29Lambdaparameter: 52
body: 38
30Variable
31Lambdaparameter: 52
body: 39
32Variable
33ExprTuple38, 40
34ExprTuple48, 40
35Literal
36ExprTuple39, 40
37ExprRangelambda_map: 41
start_index: 42
end_index: 43
38IndexedVarvariable: 44
index: 52
39IndexedVarvariable: 45
index: 52
40Operationoperator: 46
operand: 49
41Lambdaparameter: 52
body: 48
42Literal
43Variable
44Variable
45Variable
46Literal
47ExprTuple49
48IndexedVarvariable: 50
index: 52
49Variable
50Variable
51ExprTuple52
52Variable