logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, b, j
from proveit.core_expr_types import a_1_to_i, b_1_to_j, c_1_to_k
from proveit.linear_algebra import TensorProd, VecAdd
from proveit.logic import Equals
from proveit.numbers import one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_b", latex_format = r"{_{-}b}")
expr = Equals(TensorProd(a_1_to_i, VecAdd(b_1_to_j), c_1_to_k), VecAdd(ExprRange(sub_expr1, TensorProd(a_1_to_i, IndexedVar(b, sub_expr1), c_1_to_k), one, j))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} \left(b_{1} +  b_{2} +  \ldots +  b_{j}\right){\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) =  \\ \left(\left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{1}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{2}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right) +  \ldots +  \left(a_{1} {\otimes}  a_{2} {\otimes}  \ldots {\otimes}  a_{i} {\otimes} b_{j}{\otimes} c_{1} {\otimes}  c_{2} {\otimes}  \ldots {\otimes}  c_{k}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 16
operands: 5
4Operationoperator: 9
operands: 6
5ExprTuple19, 7, 21
6ExprTuple8
7Operationoperator: 9
operands: 10
8ExprRangelambda_map: 11
start_index: 27
end_index: 15
9Literal
10ExprTuple12
11Lambdaparameter: 30
body: 13
12ExprRangelambda_map: 14
start_index: 27
end_index: 15
13Operationoperator: 16
operands: 17
14Lambdaparameter: 35
body: 18
15Variable
16Literal
17ExprTuple19, 20, 21
18IndexedVarvariable: 24
index: 35
19ExprRangelambda_map: 22
start_index: 27
end_index: 23
20IndexedVarvariable: 24
index: 30
21ExprRangelambda_map: 26
start_index: 27
end_index: 28
22Lambdaparameter: 35
body: 29
23Variable
24Variable
25ExprTuple30
26Lambdaparameter: 35
body: 31
27Literal
28Variable
29IndexedVarvariable: 32
index: 35
30Variable
31IndexedVarvariable: 33
index: 35
32Variable
33Variable
34ExprTuple35
35Variable