logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, IndexedVar, U, V, Variable, W, a, b, c, i, j, k
from proveit.logic import InSet
from proveit.numbers import one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = ExprTuple(ExprRange(sub_expr1, InSet(IndexedVar(a, sub_expr1), IndexedVar(U, sub_expr1)), one, i), ExprRange(sub_expr1, InSet(IndexedVar(b, sub_expr1), IndexedVar(V, sub_expr1)), one, j), ExprRange(sub_expr1, InSet(IndexedVar(c, sub_expr1), IndexedVar(W, sub_expr1)), one, k))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a_{1} \in U_{1}\right), \left(a_{2} \in U_{2}\right), \ldots, \left(a_{i} \in U_{i}\right),\left(b_{1} \in V_{1}\right), \left(b_{2} \in V_{2}\right), \ldots, \left(b_{j} \in V_{j}\right),\left(c_{1} \in W_{1}\right), \left(c_{2} \in W_{2}\right), \ldots, \left(c_{k} \in W_{k}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3
1ExprRangelambda_map: 4
start_index: 9
end_index: 5
2ExprRangelambda_map: 6
start_index: 9
end_index: 7
3ExprRangelambda_map: 8
start_index: 9
end_index: 10
4Lambdaparameter: 31
body: 11
5Variable
6Lambdaparameter: 31
body: 12
7Variable
8Lambdaparameter: 31
body: 13
9Literal
10Variable
11Operationoperator: 16
operands: 14
12Operationoperator: 16
operands: 15
13Operationoperator: 16
operands: 17
14ExprTuple18, 19
15ExprTuple20, 21
16Literal
17ExprTuple22, 23
18IndexedVarvariable: 24
index: 31
19IndexedVarvariable: 25
index: 31
20IndexedVarvariable: 26
index: 31
21IndexedVarvariable: 27
index: 31
22IndexedVarvariable: 28
index: 31
23IndexedVarvariable: 29
index: 31
24Variable
25Variable
26Variable
27Variable
28Variable
29Variable
30ExprTuple31
31Variable