logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, beta, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import InSet
from proveit.numbers import Add, Interval, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = ScalarMult(ScalarMult(gamma, i), ScalarMult(beta, ScalarMult(Add(i, one), TensorProd(x, y))))
expr = ExprTuple(Conditional(sub_expr1, InSet(i, Interval(two, four))), sub_expr1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\gamma \cdot i\right) \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}, \left(\gamma \cdot i\right) \cdot \left(\beta \cdot \left(\left(i + 1\right) \cdot \left(x {\otimes} y\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Conditionalvalue: 2
condition: 3
2Operationoperator: 19
operands: 4
3Operationoperator: 5
operands: 6
4ExprTuple7, 8
5Literal
6ExprTuple27, 9
7Operationoperator: 19
operands: 10
8Operationoperator: 19
operands: 11
9Operationoperator: 12
operands: 13
10ExprTuple14, 27
11ExprTuple15, 16
12Literal
13ExprTuple17, 18
14Variable
15Variable
16Operationoperator: 19
operands: 20
17Literal
18Literal
19Literal
20ExprTuple21, 22
21Operationoperator: 23
operands: 24
22Operationoperator: 25
operands: 26
23Literal
24ExprTuple27, 28
25Literal
26ExprTuple29, 30
27Variable
28Literal
29Variable
30Variable