logo

Expression of type Lambda

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, beta, gamma, i
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Interval, Mult, four, one, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(i, one)
expr = Lambda(i, Conditional(Equals(Mult(beta, gamma, i, sub_expr1), Mult(gamma, beta, i, sub_expr1)), InSet(i, Interval(two, four))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
i \mapsto \left\{\left(\beta \cdot \gamma \cdot i \cdot \left(i + 1\right)\right) = \left(\gamma \cdot \beta \cdot i \cdot \left(i + 1\right)\right) \textrm{ if } i \in \{2~\ldotp \ldotp~4\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 24
body: 2
1ExprTuple24
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple24, 11
9Operationoperator: 13
operands: 12
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple18, 17, 24, 19
13Literal
14ExprTuple17, 18, 24, 19
15Literal
16ExprTuple20, 21
17Variable
18Variable
19Operationoperator: 22
operands: 23
20Literal
21Literal
22Literal
23ExprTuple24, 25
24Variable
25Literal