logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, beta, fi, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = ScalarMult(gamma, beta)
sub_expr3 = Interval(two, four)
expr = ExprTuple(ScalarMult(sub_expr2, VecSum(index_or_indices = sub_expr1, summand = TensorProd(x, fi, y), domain = sub_expr3)), ScalarMult(sub_expr2, TensorProd(x, VecSum(index_or_indices = sub_expr1, summand = fi, domain = sub_expr3), y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right), \left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} \left(\sum_{i=2}^{4} f\left(i\right)\right) {\otimes} y\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 9
operands: 3
2Operationoperator: 9
operands: 4
3ExprTuple6, 5
4ExprTuple6, 7
5Operationoperator: 17
operand: 12
6Operationoperator: 9
operands: 10
7Operationoperator: 21
operands: 11
8ExprTuple12
9Literal
10ExprTuple13, 14
11ExprTuple24, 15, 25
12Lambdaparameter: 32
body: 16
13Variable
14Variable
15Operationoperator: 17
operand: 20
16Conditionalvalue: 19
condition: 27
17Literal
18ExprTuple20
19Operationoperator: 21
operands: 22
20Lambdaparameter: 32
body: 23
21Literal
22ExprTuple24, 26, 25
23Conditionalvalue: 26
condition: 27
24Variable
25Variable
26Operationoperator: 28
operand: 32
27Operationoperator: 30
operands: 31
28Variable
29ExprTuple32
30Literal
31ExprTuple32, 33
32Variable
33Operationoperator: 34
operands: 35
34Literal
35ExprTuple36, 37
36Literal
37Literal