logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, x, y, z
from proveit.linear_algebra import TensorProd, VecAdd
from proveit.logic import CartExp, Equals, InSet
from proveit.numbers import Real, three
In [2]:
# build up the expression from sub-expressions
sub_expr1 = CartExp(Real, three)
sub_expr2 = TensorProd(VecAdd(x, y), z)
expr = ExprTuple(InSet(sub_expr2, TensorProd(sub_expr1, sub_expr1)), Equals(sub_expr2, VecAdd(TensorProd(x, z), TensorProd(y, z))).with_wrapping_at(2))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(\left(x + y\right) {\otimes} z\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right), \begin{array}{c} \begin{array}{l} \left(\left(x + y\right) {\otimes} z\right) =  \\ \left(\left(x {\otimes} z\right) + \left(y {\otimes} z\right)\right) \end{array} \end{array}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple8, 7
5Literal
6ExprTuple8, 9
7Operationoperator: 22
operands: 10
8Operationoperator: 22
operands: 11
9Operationoperator: 19
operands: 12
10ExprTuple13, 13
11ExprTuple14, 28
12ExprTuple15, 16
13Operationoperator: 17
operands: 18
14Operationoperator: 19
operands: 20
15Operationoperator: 22
operands: 21
16Operationoperator: 22
operands: 23
17Literal
18ExprTuple24, 25
19Literal
20ExprTuple26, 27
21ExprTuple26, 28
22Literal
23ExprTuple27, 28
24Literal
25Literal
26Variable
27Variable
28Variable