logo

Expression of type Implies

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import u, v, w, x, y, z
from proveit.linear_algebra import TensorProd, VecAdd
from proveit.logic import CartExp, Equals, Implies, InSet
from proveit.numbers import Real, three
In [2]:
# build up the expression from sub-expressions
sub_expr1 = CartExp(Real, three)
sub_expr2 = TensorProd(u, v, VecAdd(w, x, y), z)
expr = Implies(InSet(sub_expr2, TensorProd(sub_expr1, sub_expr1, sub_expr1, sub_expr1)), Equals(sub_expr2, VecAdd(TensorProd(u, v, w, z), TensorProd(u, v, x, z), TensorProd(u, v, y, z))).with_wrapping_at(2)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left(u {\otimes} v {\otimes} \left(w + x + y\right) {\otimes} z\right) \in \left(\mathbb{R}^{3} {\otimes} \mathbb{R}^{3} {\otimes} \mathbb{R}^{3} {\otimes} \mathbb{R}^{3}\right)\right) \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left(u {\otimes} v {\otimes} \left(w + x + y\right) {\otimes} z\right) =  \\ \left(\left(u {\otimes} v {\otimes} w {\otimes} z\right) + \left(u {\otimes} v {\otimes} x {\otimes} z\right) + \left(u {\otimes} v {\otimes} y {\otimes} z\right)\right) \end{array} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple10, 9
7Literal
8ExprTuple10, 11
9Operationoperator: 26
operands: 12
10Operationoperator: 26
operands: 13
11Operationoperator: 22
operands: 14
12ExprTuple15, 15, 15, 15
13ExprTuple32, 33, 16, 35
14ExprTuple17, 18, 19
15Operationoperator: 20
operands: 21
16Operationoperator: 22
operands: 23
17Operationoperator: 26
operands: 24
18Operationoperator: 26
operands: 25
19Operationoperator: 26
operands: 27
20Literal
21ExprTuple28, 29
22Literal
23ExprTuple30, 31, 34
24ExprTuple32, 33, 30, 35
25ExprTuple32, 33, 31, 35
26Literal
27ExprTuple32, 33, 34, 35
28Literal
29Literal
30Variable
31Variable
32Variable
33Variable
34Variable
35Variable