logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, beta, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(ScalarMult(beta, TensorProd(x, ScalarMult(beta, y))), ScalarMult(beta, ScalarMult(beta, TensorProd(x, y))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\beta \cdot \left(x {\otimes} \left(\beta \cdot y\right)\right), \beta \cdot \left(\beta \cdot \left(x {\otimes} y\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 11
operands: 3
2Operationoperator: 11
operands: 4
3ExprTuple15, 5
4ExprTuple15, 6
5Operationoperator: 13
operands: 7
6Operationoperator: 11
operands: 8
7ExprTuple16, 9
8ExprTuple15, 10
9Operationoperator: 11
operands: 12
10Operationoperator: 13
operands: 14
11Literal
12ExprTuple15, 17
13Literal
14ExprTuple16, 17
15Variable
16Variable
17Variable