logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, beta, fi, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.numbers import Interval, Mult, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = Interval(two, four)
expr = ExprTuple(TensorProd(x, VecSum(index_or_indices = sub_expr1, summand = ScalarMult(ScalarMult(gamma, beta), fi), domain = sub_expr2), y), TensorProd(x, ScalarMult(Mult(gamma, beta), VecSum(index_or_indices = sub_expr1, summand = fi, domain = sub_expr2)), y))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x {\otimes} \left(\sum_{i=2}^{4} \left(\left(\gamma \cdot \beta\right) \cdot f\left(i\right)\right)\right) {\otimes} y, x {\otimes} \left(\left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} f\left(i\right)\right)\right) {\otimes} y\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple7, 6, 9
4Literal
5ExprTuple7, 8, 9
6Operationoperator: 17
operand: 12
7Variable
8Operationoperator: 26
operands: 11
9Variable
10ExprTuple12
11ExprTuple13, 14
12Lambdaparameter: 34
body: 15
13Operationoperator: 16
operands: 27
14Operationoperator: 17
operand: 20
15Conditionalvalue: 19
condition: 25
16Literal
17Literal
18ExprTuple20
19Operationoperator: 26
operands: 21
20Lambdaparameter: 34
body: 22
21ExprTuple23, 24
22Conditionalvalue: 24
condition: 25
23Operationoperator: 26
operands: 27
24Operationoperator: 28
operand: 34
25Operationoperator: 30
operands: 31
26Literal
27ExprTuple32, 33
28Variable
29ExprTuple34
30Literal
31ExprTuple34, 35
32Variable
33Variable
34Variable
35Operationoperator: 36
operands: 37
36Literal
37ExprTuple38, 39
38Literal
39Literal