logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, beta, fi, gamma, i, x, y
from proveit.linear_algebra import ScalarMult, TensorProd, VecSum
from proveit.numbers import Interval, four, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [i]
sub_expr2 = ScalarMult(gamma, beta)
sub_expr3 = Interval(two, four)
sub_expr4 = TensorProd(x, fi, y)
expr = ExprTuple(VecSum(index_or_indices = sub_expr1, summand = ScalarMult(sub_expr2, sub_expr4), domain = sub_expr3), ScalarMult(sub_expr2, VecSum(index_or_indices = sub_expr1, summand = sub_expr4, domain = sub_expr3)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=2}^{4} \left(\left(\gamma \cdot \beta\right) \cdot \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right), \left(\gamma \cdot \beta\right) \cdot \left(\sum_{i=2}^{4} \left(x {\otimes} f\left(i\right) {\otimes} y\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 8
operand: 5
2Operationoperator: 17
operands: 4
3ExprTuple5
4ExprTuple14, 6
5Lambdaparameter: 33
body: 7
6Operationoperator: 8
operand: 11
7Conditionalvalue: 10
condition: 16
8Literal
9ExprTuple11
10Operationoperator: 17
operands: 12
11Lambdaparameter: 33
body: 13
12ExprTuple14, 15
13Conditionalvalue: 15
condition: 16
14Operationoperator: 17
operands: 18
15Operationoperator: 19
operands: 20
16Operationoperator: 21
operands: 22
17Literal
18ExprTuple23, 24
19Literal
20ExprTuple25, 26, 27
21Literal
22ExprTuple33, 28
23Variable
24Variable
25Variable
26Operationoperator: 29
operand: 33
27Variable
28Operationoperator: 31
operands: 32
29Variable
30ExprTuple33
31Literal
32ExprTuple34, 35
33Variable
34Literal
35Literal