logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, x, y, z
from proveit.linear_algebra import TensorProd
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(TensorProd(TensorProd(x, TensorProd(y, z)), x, y), TensorProd(x, y, z, x, y))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(x {\otimes} \left(y {\otimes} z\right)\right) {\otimes} x {\otimes} y, x {\otimes} y {\otimes} z {\otimes} x {\otimes} y\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 9
operands: 3
2Operationoperator: 9
operands: 4
3ExprTuple5, 7, 11
4ExprTuple7, 11, 12, 7, 11
5Operationoperator: 9
operands: 6
6ExprTuple7, 8
7Variable
8Operationoperator: 9
operands: 10
9Literal
10ExprTuple11, 12
11Variable
12Variable