logo

Expression of type Equals

from the theory of proveit.linear_algebra.tensors

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import a, alpha, v, w, x, y
from proveit.linear_algebra import ScalarMult, TensorProd
from proveit.logic import Equals
In [2]:
# build up the expression from sub-expressions
expr = Equals(ScalarMult(a, TensorProd(v, w, x, ScalarMult(alpha, y))), ScalarMult(a, ScalarMult(alpha, TensorProd(v, w, x, y))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a \cdot \left(v {\otimes} w {\otimes} x {\otimes} \left(\alpha \cdot y\right)\right)\right) = \left(a \cdot \left(\alpha \cdot \left(v {\otimes} w {\otimes} x {\otimes} y\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 14
operands: 5
4Operationoperator: 14
operands: 6
5ExprTuple8, 7
6ExprTuple8, 9
7Operationoperator: 16
operands: 10
8Variable
9Operationoperator: 14
operands: 11
10ExprTuple19, 20, 21, 12
11ExprTuple18, 13
12Operationoperator: 14
operands: 15
13Operationoperator: 16
operands: 17
14Literal
15ExprTuple18, 22
16Literal
17ExprTuple19, 20, 21, 22
18Variable
19Variable
20Variable
21Variable
22Variable