logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, V
from proveit.linear_algebra import lin_comb_axn
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(lin_comb_axn, V)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a_{1} \cdot x_{1}\right) +  \left(a_{2} \cdot x_{2}\right) +  \ldots +  \left(a_{n} \cdot x_{n}\right), V\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Variable
3Literal
4ExprTuple5
5ExprRangelambda_map: 6
start_index: 7
end_index: 8
6Lambdaparameter: 17
body: 9
7Literal
8Variable
9Operationoperator: 10
operands: 11
10Literal
11ExprTuple12, 13
12IndexedVarvariable: 14
index: 17
13IndexedVarvariable: 15
index: 17
14Variable
15Variable
16ExprTuple17
17Variable