logo

Expression of type Forall

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import K, V, alpha, beta, x
from proveit.linear_algebra import ScalarMult, VecSpaces
from proveit.logic import Equals, Forall
In [2]:
# build up the expression from sub-expressions
expr = Forall(instance_param_or_params = [V], instance_expr = Forall(instance_param_or_params = [x], instance_expr = Forall(instance_param_or_params = [alpha, beta], instance_expr = Equals(ScalarMult(alpha, ScalarMult(beta, x)), ScalarMult(ScalarMult(alpha, beta), x)), domain = K), domain = V), domain = VecSpaces(K))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\forall_{V \underset{{\scriptscriptstyle c}}{\in} \textrm{VecSpaces}\left(K\right)}~\left[\forall_{x \in V}~\left[\forall_{\alpha, \beta \in K}~\left(\left(\alpha \cdot \left(\beta \cdot x\right)\right) = \left(\left(\alpha \cdot \beta\right) \cdot x\right)\right)\right]\right]
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
with_wrappingIf 'True', wrap the Expression after the parametersNoneNone/False('with_wrapping',)
condition_wrappingWrap 'before' or 'after' the condition (or None).NoneNone/False('with_wrap_after_condition', 'with_wrap_before_condition')
wrap_paramsIf 'True', wraps every two parameters AND wraps the Expression after the parametersNoneNone/False('with_params',)
justificationjustify to the 'left', 'center', or 'right' in the array cellscentercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 18
operand: 2
1ExprTuple2
2Lambdaparameter: 22
body: 4
3ExprTuple22
4Conditionalvalue: 5
condition: 6
5Operationoperator: 18
operand: 10
6Operationoperator: 8
operands: 9
7ExprTuple10
8Literal
9ExprTuple22, 11
10Lambdaparameter: 45
body: 13
11Operationoperator: 14
operand: 41
12ExprTuple45
13Conditionalvalue: 16
condition: 17
14Literal
15ExprTuple41
16Operationoperator: 18
operand: 21
17Operationoperator: 37
operands: 20
18Literal
19ExprTuple21
20ExprTuple45, 22
21Lambdaparameters: 44
body: 23
22Variable
23Conditionalvalue: 24
condition: 25
24Operationoperator: 26
operands: 27
25Operationoperator: 28
operands: 29
26Literal
27ExprTuple30, 31
28Literal
29ExprTuple32, 33
30Operationoperator: 43
operands: 34
31Operationoperator: 43
operands: 35
32Operationoperator: 37
operands: 36
33Operationoperator: 37
operands: 38
34ExprTuple46, 39
35ExprTuple40, 45
36ExprTuple46, 41
37Literal
38ExprTuple47, 41
39Operationoperator: 43
operands: 42
40Operationoperator: 43
operands: 44
41Variable
42ExprTuple47, 45
43Literal
44ExprTuple46, 47
45Variable
46Variable
47Variable