logo

Expression of type Implies

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import V, k
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra import ScalarMult, VecSum
from proveit.linear_algebra.addition import vec_summation_b1toj_fQ
from proveit.logic import Equals, Implies, InSet
In [2]:
# build up the expression from sub-expressions
expr = Implies(InSet(vec_summation_b1toj_fQ, V), Equals(ScalarMult(k, vec_summation_b1toj_fQ), VecSum(index_or_indices = [b_1_to_j], summand = ScalarMult(k, f__b_1_to_j), condition = Q__b_1_to_j)).with_wrapping_at(1)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(\left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right] \in V\right) \Rightarrow  \\ \left(\begin{array}{c} \begin{array}{l} \left(k \cdot \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right]\right) \\  = \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(k \cdot f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right)\right] \end{array} \end{array}\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple14, 9
7Literal
8ExprTuple10, 11
9Variable
10Operationoperator: 22
operands: 12
11Operationoperator: 16
operand: 15
12ExprTuple25, 14
13ExprTuple15
14Operationoperator: 16
operand: 19
15Lambdaparameters: 29
body: 18
16Literal
17ExprTuple19
18Conditionalvalue: 20
condition: 24
19Lambdaparameters: 29
body: 21
20Operationoperator: 22
operands: 23
21Conditionalvalue: 26
condition: 24
22Literal
23ExprTuple25, 26
24Operationoperator: 27
operands: 29
25Variable
26Operationoperator: 28
operands: 29
27Variable
28Variable
29ExprTuple30
30ExprRangelambda_map: 31
start_index: 32
end_index: 33
31Lambdaparameter: 37
body: 34
32Literal
33Variable
34IndexedVarvariable: 35
index: 37
35Variable
36ExprTuple37
37Variable