logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.scalar_multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.linear_algebra import ScalarMult
from proveit.numbers import one
from proveit.physics.quantum import ket0
In [2]:
# build up the expression from sub-expressions
sub_expr1 = ScalarMult(one, ScalarMult(one, ket0))
expr = ExprTuple(ScalarMult(one, sub_expr1), sub_expr1)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(1 \cdot \left(1 \cdot \left(1 \cdot \lvert 0 \rangle\right)\right), 1 \cdot \left(1 \cdot \lvert 0 \rangle\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 3
1Operationoperator: 6
operands: 2
2ExprTuple8, 3
3Operationoperator: 6
operands: 4
4ExprTuple8, 5
5Operationoperator: 6
operands: 7
6Literal
7ExprTuple8, 9
8Literal
9Operationoperator: 10
operand: 12
10Literal
11ExprTuple12
12Literal