logo

Expression of type Lambda

from the theory of proveit.linear_algebra.linear_maps

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import A, B, Composition, Conditional, Lambda, V
from proveit.linear_algebra import AntiCommutator, VecAdd
from proveit.logic import And, Equals, InSet
In [2]:
# build up the expression from sub-expressions
expr = Lambda([A, B], Conditional(Equals(AntiCommutator(A, B), VecAdd(Composition(A, B), Composition(B, A))), And(InSet(A, V), InSet(B, V))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(A, B\right) \mapsto \left\{\left\{A, B\right\} = \left(\left(A \circ B\right) + \left(B \circ A\right)\right) \textrm{ if } A \in V ,  B \in V\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 21
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Operationoperator: 12
operands: 21
9Operationoperator: 13
operands: 14
10Operationoperator: 16
operands: 15
11Operationoperator: 16
operands: 17
12Literal
13Literal
14ExprTuple18, 19
15ExprTuple25, 20
16Literal
17ExprTuple24, 20
18Operationoperator: 22
operands: 21
19Operationoperator: 22
operands: 23
20Variable
21ExprTuple25, 24
22Literal
23ExprTuple24, 25
24Variable
25Variable