logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Function, i, v, vi
from proveit.linear_algebra import VecSum
from proveit.numbers import Interval, eight, one, seven
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(VecSum(index_or_indices = [i], summand = vi, domain = Interval(one, seven)), Function(v, [eight]))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{i=1}^{7} v\left(i\right), v\left(8\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 6
2Operationoperator: 11
operand: 7
3Literal
4ExprTuple6
5ExprTuple7
6Lambdaparameter: 15
body: 8
7Literal
8Conditionalvalue: 9
condition: 10
9Operationoperator: 11
operand: 15
10Operationoperator: 13
operands: 14
11Variable
12ExprTuple15
13Literal
14ExprTuple15, 16
15Variable
16Operationoperator: 17
operands: 18
17Literal
18ExprTuple19, 20
19Literal
20Literal