logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, ,  ⊢  
  : , : , :
1reference25  ⊢  
2instantiation19, 3, ,  ⊢  
  : , :
3instantiation4, 5, 6, 7, ,  ⊢  
  : , : , : , :
4theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
5instantiation8, 9, 10, 31, 30, ,  ⊢  
  : , : , : , : , :
6instantiation11, 12, 13,  ⊢  
  : , : , :
7instantiation14  ⊢  
  :
8theorem  ⊢  
 proveit.linear_algebra.scalar_multiplication.doubly_scaled_as_singly_scaled
9instantiation15, 23  ⊢  
  :
10instantiation16, 17, 18  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
12instantiation19, 20,  ⊢  
  : , :
13instantiation25, 21,  ⊢  
  : , : , :
14axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
15theorem  ⊢  
 proveit.linear_algebra.complex_vec_set_is_vec_space
16theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
17instantiation22, 23, 24  ⊢  
  : , : , :
18assumption  ⊢  
19theorem  ⊢  
 proveit.logic.equality.equals_reversal
20instantiation25, 26,  ⊢  
  : , : , :
21instantiation27, 31, 30,  ⊢  
  : , :
22theorem  ⊢  
 proveit.logic.sets.cartesian_products.cart_exp_subset_eq
23theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat3
24instantiation28, 34  ⊢  
  : , :
25axiom  ⊢  
 proveit.logic.equality.substitution
26instantiation29, 30, 31,  ⊢  
  : , :
27axiom  ⊢  
 proveit.linear_algebra.scalar_multiplication.scalar_mult_extends_number_mult
28theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
29theorem  ⊢  
 proveit.numbers.multiplication.commutation
30instantiation33, 34, 32  ⊢  
  : , : , :
31instantiation33, 34, 35  ⊢  
  : , : , :
32assumption  ⊢  
33theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
34theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
35assumption  ⊢