logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, 4*, , ,  ⊢  
  : , : , :
1reference8  ⊢  
2instantiation8, 5, 6, , ,  ⊢  
  : , : , :
3instantiation11, 21, 22, 23, 24, 7, 13, 28, 18, , ,  ⊢  
  : , : , : , : , : , :
4instantiation8, 9, 10, , ,  ⊢  
  : , : , :
5instantiation11, 23, 22, 25, 28, 26, 27, 18, , ,  ⊢  
  : , : , : , : , : , :
6instantiation12, 21, 23, 24, 28, 13, 18, , ,  ⊢  
  : , : , : , : , : , : , :
7instantiation31  ⊢  
  : , :
8axiom  ⊢  
 proveit.logic.equality.equals_transitivity
9instantiation14, 15, ,  ⊢  
  : , : , :
10instantiation20, 21, 16, 23, 24, 17, 26, 27, 28, 18, , ,  ⊢  
  : , : , : , : , : , :
11theorem  ⊢  
 proveit.numbers.multiplication.association
12theorem  ⊢  
 proveit.numbers.multiplication.leftward_commutation
13instantiation19, 26, 27,  ⊢  
  : , :
14axiom  ⊢  
 proveit.logic.equality.substitution
15instantiation20, 21, 22, 23, 24, 25, 26, 27, 28, ,  ⊢  
  : , : , : , : , : , :
16theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
17instantiation29  ⊢  
  : , : , :
18instantiation33, 34, 30  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.multiplication.mult_complex_closure_bin
20theorem  ⊢  
 proveit.numbers.multiplication.disassociation
21axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
22theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
23theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
24theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
25instantiation31  ⊢  
  : , :
26instantiation33, 34, 32  ⊢  
  : , : , :
27instantiation33, 34, 35  ⊢  
  : , : , :
28assumption  ⊢  
29theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
30assumption  ⊢  
31theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
32assumption  ⊢  
33theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
34theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
35assumption  ⊢  
*equality replacement requirements