logo

Expression of type Conditional

from the theory of proveit.linear_algebra.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Function, k, t, v
from proveit.logic import InSet
from proveit.numbers import Add, Exp, Interval, Neg, one, subtract, two
In [2]:
# build up the expression from sub-expressions
expr = Conditional(Function(v, [Add(k, one)]), InSet(k, Interval(Neg(one), subtract(Exp(two, t), one))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{v\left(k + 1\right) \textrm{ if } k \in \{-1~\ldotp \ldotp~2^{t} - 1\}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operand: 7
2Operationoperator: 5
operands: 6
3Variable
4ExprTuple7
5Literal
6ExprTuple12, 8
7Operationoperator: 14
operands: 9
8Operationoperator: 10
operands: 11
9ExprTuple12, 24
10Literal
11ExprTuple17, 13
12Variable
13Operationoperator: 14
operands: 15
14Literal
15ExprTuple16, 17
16Operationoperator: 18
operands: 19
17Operationoperator: 20
operand: 24
18Literal
19ExprTuple22, 23
20Literal
21ExprTuple24
22Literal
23Variable
24Literal