logo

Expression of type Equals

from the theory of proveit.linear_algebra.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Function, N, k, v, vk
from proveit.linear_algebra import ScalarMult, VecAdd, VecSum
from proveit.logic import Equals
from proveit.numbers import Exp, Interval, Mult, e, i, one, pi, two, zero
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [k]
sub_expr2 = ScalarMult(Exp(e, Mult(two, pi, i, k)), vk)
expr = Equals(VecSum(index_or_indices = sub_expr1, summand = sub_expr2, domain = Interval(zero, N)), VecAdd(Function(v, [zero]), VecSum(index_or_indices = sub_expr1, summand = sub_expr2, domain = Interval(one, N))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{k=0}^{N} \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot k} \cdot v\left(k\right)\right)\right) = \left(v\left(0\right) + \left(\sum_{k=1}^{N} \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot k} \cdot v\left(k\right)\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 13
operand: 8
4Operationoperator: 6
operands: 7
5ExprTuple8
6Literal
7ExprTuple9, 10
8Lambdaparameter: 46
body: 11
9Operationoperator: 33
operand: 27
10Operationoperator: 13
operand: 16
11Conditionalvalue: 20
condition: 15
12ExprTuple27
13Literal
14ExprTuple16
15Operationoperator: 25
operands: 17
16Lambdaparameter: 46
body: 18
17ExprTuple46, 19
18Conditionalvalue: 20
condition: 21
19Operationoperator: 35
operands: 22
20Operationoperator: 23
operands: 24
21Operationoperator: 25
operands: 26
22ExprTuple27, 40
23Literal
24ExprTuple28, 29
25Literal
26ExprTuple46, 30
27Literal
28Operationoperator: 31
operands: 32
29Operationoperator: 33
operand: 46
30Operationoperator: 35
operands: 36
31Literal
32ExprTuple37, 38
33Variable
34ExprTuple46
35Literal
36ExprTuple39, 40
37Literal
38Operationoperator: 41
operands: 42
39Literal
40Variable
41Literal
42ExprTuple43, 44, 45, 46
43Literal
44Literal
45Literal
46Variable