logo

Expression of type Implies

from the theory of proveit.linear_algebra.addition

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.core_expr_types import Q__b_1_to_j, b_1_to_j, f__b_1_to_j
from proveit.linear_algebra.addition import vec_summation_b1toj_fQ
from proveit.logic import Equals, Forall, Implies, InSet
from proveit.numbers import Complex
from proveit.numbers.summation import summation_b1toj_fQ
In [2]:
# build up the expression from sub-expressions
expr = Implies(Forall(instance_param_or_params = [b_1_to_j], instance_expr = InSet(f__b_1_to_j, Complex), condition = Q__b_1_to_j), Equals(vec_summation_b1toj_fQ, summation_b1toj_fQ)).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left[\forall_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~\left(f\left(b_{1}, b_{2}, \ldots, b_{j}\right) \in \mathbb{C}\right)\right] \Rightarrow  \\ \left(\left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right] = \left[\sum_{b_{1}, b_{2}, \ldots, b_{j}~|~Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)}~f\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right]\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 9
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9
7Literal
8ExprTuple10, 11
9Lambdaparameters: 26
body: 12
10Operationoperator: 13
operand: 17
11Operationoperator: 14
operand: 17
12Conditionalvalue: 16
condition: 23
13Literal
14Literal
15ExprTuple17
16Operationoperator: 18
operands: 19
17Lambdaparameters: 26
body: 20
18Literal
19ExprTuple22, 21
20Conditionalvalue: 22
condition: 23
21Literal
22Operationoperator: 24
operands: 26
23Operationoperator: 25
operands: 26
24Variable
25Variable
26ExprTuple27
27ExprRangelambda_map: 28
start_index: 29
end_index: 30
28Lambdaparameter: 34
body: 31
29Literal
30Variable
31IndexedVarvariable: 32
index: 34
32Variable
33ExprTuple34
34Variable