# from the theory of proveit.linear_algebra.addition¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, i, va, vi
from proveit.linear_algebra import VecSum
from proveit.numbers import Interval

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(VecSum(index_or_indices = [i], summand = vi, domain = Interval(a, a)), va)

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(\sum_{i=a}^{a} v\left(i\right), v\left(a\right)\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operand: 6
2Operationoperator: 10
operand: 18
3Literal
4ExprTuple6
5ExprTuple18
6Lambdaparameter: 14
body: 7
7Conditionalvalue: 8
condition: 9
8Operationoperator: 10
operand: 14
9Operationoperator: 12
operands: 13
10Variable
11ExprTuple14
12Literal
13ExprTuple14, 15
14Variable
15Operationoperator: 16
operands: 17
16Literal
17ExprTuple18, 18
18Variable