logo

Expression of type Lambda

from the theory of proveit.linear_algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Function, Lambda, S, T, V, v
from proveit.linear_algebra import LinMapAdd
from proveit.logic import Equals, InSet
from proveit.numbers import Add
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [v]
expr = Lambda(v, Conditional(Equals(Function(LinMapAdd(S, T), sub_expr1), Add(Function(S, sub_expr1), Function(T, sub_expr1))), InSet(v, V)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
v \mapsto \left\{\left(S + T\right)\left(v\right) = \left(S\left(v\right) + T\left(v\right)\right) \textrm{ if } v \in V\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 21
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple21, 10
8Operationoperator: 11
operand: 21
9Operationoperator: 12
operands: 13
10Variable
11Operationoperator: 14
operands: 15
12Literal
13ExprTuple16, 17
14Literal
15ExprTuple18, 19
16Operationoperator: 18
operand: 21
17Operationoperator: 19
operand: 21
18Variable
19Variable
20ExprTuple21
21Variable