logo

Expression of type ExprTuple

from the theory of proveit.linear_algebra

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, Lambda, S, V, W
from proveit.linear_algebra import LinMap, LinMapAdd
from proveit.logic import Equals, Forall
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([V, W], Forall(instance_param_or_params = [S], instance_expr = Equals(LinMapAdd(S), S), domain = LinMap(V, W))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(V, W\right) \mapsto \left[\forall_{S \in \mathcal{L}\left(V, W\right)}~\left(\left[+\right]\left(S\right) = S\right)\right]\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 18
body: 2
2Operationoperator: 3
operand: 5
3Literal
4ExprTuple5
5Lambdaparameter: 19
body: 6
6Conditionalvalue: 7
condition: 8
7Operationoperator: 9
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 19
11Literal
12ExprTuple19, 14
13Operationoperator: 15
operand: 19
14Operationoperator: 17
operands: 18
15Literal
16ExprTuple19
17Literal
18ExprTuple20, 21
19Variable
20Variable
21Variable