
SAND90-0247
Unlimited Release

Draft Date: March 30, 2021

SUPES Version 2.1
A Software Utilities Package for the

Engineering Sciences

John R. Red-Horse
William C. Mills-Curran

Dennis P. Flanagan

Applied Mechanics Division IV
Sandia National Laboratories
Albuquerque, NM 87185-0380

Abstract
The Software Utilities Package for the Engineering Sciences (SUPES) is a collection of subprograms
which perform frequently used non-numerical services for the engineering applications programmer.
The three functional categories of SUPES are: (1) input command parsing, (2) dynamic memory
management, and (3) system dependent utilities. The subprograms in categories one and two are
written in standard FORTRAN-77, while the subprograms in category three are written to provide
a standardized FORTRAN interface to several system dependent features.

NOTE: This version has been cleaned up a little to reflect the current state of the code. Some
sections have been removed that are no longer relevant.

Contents

1 INTRODUCTION 7

2 INSTALLATION PROCEDURE 9

3 FREE FIELD INPUT 10

3.1 Keyword/Value Input System . 10

3.2 Syntax Rules . 11

3.3 Free Field Input Routines . 12

3.3.1 External Input Routine (FREFLD) . 12

3.3.2 Internal Input Routine (FFISTR) . 14

3.3.3 Basic Examples . 16

3.4 Utility Routines . 17

3.4.1 Get Literal Input Line (GETINP) . 18

3.4.2 Strip Leading/Trailing Blanks (STRIPB) . 19

3.4.3 Process Quoted String (QUOTED) . 19

4 MEMORY MANAGER 21

4.1 Indexing System . 21

4.2 Basic Routines . 22

4.2.1 Initialize (MDINIT/MCINIT) . 22

4.2.2 Define Dynamic Array (MDRSRV/MCRSRV) 23

4.2.3 Delete Dynamic Array (MDDEL/MCDEL) 24

4.2.4 Reserve Memory Block (MDGET/MCGET) 24

4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE) 24

4.2.6 Obtain Statistics (MDSTAT/MCSTAT) . 25

4.2.7 Print Error Summary (MDEROR/MCEROR) 25

4.2.8 Enable data initialization (MDFILL/MCFILL) 26

4

4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF) 27

4.2.10 Basic Example . 27

4.3 Advanced Routines . 27

4.3.1 Rename Dynamic Array (MDNAME/MCNAME) 27

4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG) 28

4.3.3 Locate Dynamic Array (MDFIND/MCFIND) 29

4.3.4 Compress Storage (MDCOMP/MCCOMP) 29

4.3.5 Error Flag Query (MDERPT/MCERPT) . 29

4.3.6 Modify Error Count (MDEFIX/MCEFIX) . 30

4.3.7 Report Last Error (MDLAST/MCLAST) . 30

4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT) 31

4.3.9 Execute Deferred Memory Requests (MDEXEC/MCEXEC) 31

4.3.10 Report storage information (MDMEMS/MCMEMS) 32

4.4 Development Aids . 32

4.4.1 List Storage Tables (MDLIST/MCLIST) . 32

4.4.2 Print Dynamic Array (MDPRNT/MCPRNT) 33

4.4.3 Debug Printing (MDDEBG/MCDEBG) . 34

5 EXTENSION LIBRARY 35

5.1 User Interface Routines . 35

5.1.1 Get Today’s Date (EXDATE) . 36

5.1.2 Get Time of Day (EXTIME) . 36

5.1.3 Get Accumulated Processor Time (EXCPUS) 36

5.1.4 Get Operating Environment Parameters (EXPARM) 36

5.1.5 Get Unit File Name or Symbol Value (EXNAME) 37

5.2 Utility Support Routines . 38

5.2.1 Convert String to Uppercase (EXUPCS) . 38

5.2.2 Prompt/Read/Echo Input Record (EXREAD) 39

5.2.3 Evaluate Numeric Storage Location (IXLNUM) 39

5.2.4 Evaluate Character Storage Location (IXLCHR) 40

5.2.5 Get/Release Memory Block (EXMEMY) . 40

6 SUPPORT PROGRAMMER’S GUIDE 41

6.1 Free Field Input . 41

6.1.1 Implementation Notes on FREFLD . 41

6.1.2 Test Program for FREFLD . 42

5

6.2 Memory Manager . 43

6.2.1 Table Architecture and Maintenance . 43

6.2.2 Non-ANSI FORTRAN Assumptions . 44

6.2.3 Test Program . 44

6.3 Extension Library Implementation . 45

6.3.1 Implementation Notes for Modules . 46

6.3.2 Extension Library Test Program . 47

6.4 Installation Documentation Guidelines . 48

A SITE SUPPLEMENTS 50

A.1 Site Supplement for Unix / Linux Systems . 50

A.1.1 Linking . 50

A.1.2 Defining Unit/File or Symbol/Value for EXNAME 50

A.1.3 Interface to EXREAD . 51

6

Chapter 1

INTRODUCTION

The Software Utilities Package for the Engineering Sciences (SUPES) is a collection of subprograms
which perform frequently used non-numerical services for the engineering applications programmer.
The three functional categories of SUPES are:

1. input command parsing,

2. dynamic memory management, and

3. system dependent utilities.

The subprograms in categories one and two are written in standard FORTRAN-77 [1], while the
subprograms in category three are written in the C programming language. Thus providing a
standardized FORTRAN interface to several system dependent features across a variety of hardware
configurations while using a single set of source files. This feature can be viewed as a maintenance
aid from several perspectives. Among these are: there is only one set of source files to account for, it
allows one to standardize the build procedure, and it provides a clearer starting point for any future
ports. In fact, a build procedure is now part of the standard SUPES distribution and is documented
in Chapter 2. Further, the system dependent modules set an appropriate template for the porting
of SUPES to other hardware and/or software configurations.

Applications programmers face many similar user and system interface problems during code de-
velopment. Because ANSI standard FORTRAN does not address many of these problems, each
programmer solves these problems for his/her own code. SUPES aids the programmer by:

1. Providing a library of useful subprograms.

2. Defining a standard interface format for common utilities.

3. Providing a single point for debugging of common utilities. That is, SUPES has to be debugged
only once and then is ready for use by any code.

Use of SUPES by the applications programmer can expand a code’s capability, reduce errors, mini-
mize support effort and reduce development time. Because SUPES was designed to be reliable and
supportable, there are some features that are not included.

1. It is not extremely sophisticated, rather it is reliable and maintainable.

7

2. Except for the extension library (Chapter 5), it is not system dependent.

3. It does not take advantage of extended system capabilities since they may not be available on
a wide range of operating systems.

4. It is not written to maximize cpu speed.

8

Chapter 2

INSTALLATION PROCEDURE

This section is no longer relevant.

SUPES is installed as part of the SEACAS CMake build which should be described on the github
site where you obtained this software.

9

Chapter 3

FREE FIELD INPUT

This chapter describes the free field input system supported in SUPES. This software was developed
because it was recognized that most codes written within the Engineering Sciences Directorate have
very similar command input requirements. The SUPES free field input system consolidates the
development and maintenance of command parsing code into a single set of reliable software. This
utility provides a uniform command syntax across application codes to the end user, and minimizes
the burden of command parsing on the applications programmer.

The design requirements which are imposed on the SUPES free field input system are as follows:

1. Input must follow a natural syntax which encourages readability.

2. The system must be applicable to both batch and interactive command input modes.

3. The software must be written in ANSI FORTRAN [1].

4. The interface to the applications program must be clear and flexible.

Version 2 of the SUPES free field reader differs from version 1 in the following areas:

1. An interface has been provided to allow character strings to be input to the free field reader
in addition to reading from files. This allows the applications programmer to perform more
sophisticated string parsing than would be possible when reading only from a file.

2. Whole, real numbers (e.g., 12.3E3) will translate to both INTEGER and REAL values if the
absolute value of the number is not greater than 1.0E9.

3. Quoted strings are allowed. This makes the free field reader more compatible with the standard
FORTRAN free field input. No interpretation of characters (except for internal quotes) is
performed within a quoted string.

3.1 Keyword/Value Input System

This section describes the basic characteristics of the SUPES free field input system. SUPES ad-
dresses the first two phases of command processing; it obtains a record from the input stream, and
parses the record into logical components. Interpretation of the data in the final phase of command
processing is left to the applications program.

10

SUPES provides a keyword/value input structure which encourages a verb oriented command lan-
guage. The hallmark of this input style is the concept of “verbs” (or “keywords”) which indicate
how a command is to be interpreted. Since keywords allow each command to be self-contained,
input lines need not follow a rigid order. This results in highly readable input data. For example,
the command “YOUNGS MODULUS = 30.E6” has a very clear meaning. The verb oriented style
can be contrasted with standard FORTRAN list-directed I/O which requires the application code
to know precisely what to expect before reading a line of input.

The SUPES free field input system has a very simple, yet versatile syntax. Input records are broken
into “fields”. Each field is categorized according to its contents as: null, character, real, or integer.
Note that these four categories form a hierarchy where each subsequent category is a more specific
subset of the previous one. For example, “5.2345E3” is a real field because it can be interpreted as
a REAL value as well as a valid CHARACTER string, but does not constitute a valid INTEGER
format.

There are just four syntax markers in SUPES: field separators which delimit data fields, a quote
character which encloses literal strings, a comment indicator which allows a comment to be appended
to command lines, and a continuation indicator which causes consecutive input records to be logically
joined.

An application program need not use all of the information returned for each field. A default value
(blank or zero) is returned when a valid value is not specified for a given field. On the other hand,
the application code can easily detect that the user has not explicitly specified a value so that a more
meaningful default can be assumed, or so that the user can be prompted to supply more information.

3.2 Syntax Rules

The syntax rules for the SUPES free field input structure are listed below. This syntax describes how
input records/strings are parsed into data fields. Both the end user and the applications programmer
should clearly understand these few rules.

1. A data field is any sequence of data characters within an input line. A data field is broken by
(does not include) any non-data character or the end of the input line. A non-data character
is a field separator, a space, a comment indicator, or a continuation indicator. Any other
character is a data character.

2. A field separator is a comma (,), an equal sign (=), or a series of one or more spaces not
adjacent to another separator.

3. A dollar sign ($) indicates a comment. All characters after and including the comment indicator
are ignored.

4. An asterisk (∗) indicates that the next input record/string will be treated as a continuation of
the current line. All characters after and including the continuation indicator on the current
line are ignored. Multiple records/strings that are ”joined” by continuation indicators are
treated as a single logical record.

5. A null field does not contain any data characters. A null field can be defined explicitly only by
a field separator (spaces cannot act as a field separator for an explicit null field). Fields which
are not defined on the input line are implicitly null.

6. Lowercase letters not contained in a quoted string are converted to uppercase. All other
non-printable ASCII characters are converted to spaces.

11

7. A numeric field is a data field which adheres to an ANSI FORTRAN numeric format. A
numeric field cannot be longer than 32 characters. A numeric field always defines a REAL
(floating point) value; it also defines an INTEGER (fixed point) value if it adheres to a legal
INTEGER format.

8. A quoted string is a data field in which the quote (’) character is the first nonblank character.
An internal quote is indicated with 2 consecutive quote characters. If an end quote character
is not included, then the remainder of the record (excluding any trailing blanks) is treated
as part of the quoted string. Within a quoted string, no character conversion to uppercase is
performed. Delimiters (other than quotes) are treated as part of the string. Interpretation of
data to numeric data will be performed, if possible.

9. A data field which does not begin with the quote character, but has a quote internal to the
field (e.g., MOM’S) is not considered a quoted string. In this case, the internal quote is not a
special character.

10. The maximum length of an input record (FREFLD only) is 132 characters. Input strings to
FFISTR may be any length.

Some important points which are not obvious from the above rules are noted below.

• Spaces have no significance except when they act a field separator.

• Only the first occurrence of a comment or continuation character is significant; subsequent
characters are considered part of the comment.

• A blank line has no data fields.

• If no data characters appear after the last field separator, the field after that separator will
not be counted.

3.3 Free Field Input Routines

The user interface to the SUPES free field input system consists of two subroutines: FREFLD and
FFISTR. Both routines perform parsing functions of strings. The main difference is that FFREFLD
gets its input from a FORTRAN I/O unit while FFISTR gets its input from a character string. In
fact, FREFLD uses FFISTR to perform parsing functions once FREFLD has read a record.

3.3.1 External Input Routine (FREFLD)

Input is prompted for, read, and echoed via FREFLD using specified I/O units. FREFLD returns
the parsed data field values defined on the next input record and any continuation records. All I/O
is accomplished via the utility routine GETINP, which is documented further in section 3.4.1, while
the parsing is performed by FFISTR.

The arguments to FREFLD are prescribed below.

CALL FREFLD(KIN, KOUT, PROMPT, MFIELD, IOSTAT, NFIELD, KVALUE,

* CVALUE, IVALUE, RVALUE)

Argument: KIN

12

Type: INTEGER

Access: Read Only

Description: Unit from which to read input. If zero, read from the standard input device
(terminal or batch deck) and echo to the standard output device (terminal or
batch log). If non-zero, the caller is responsible for opening/closing this unit.

Argument: KOUT

Type: INTEGER

Access: Read Only

Description: Unit to which to echo input. If zero, do not echo other than to the standard
output device as described above. If non-zero, the caller is responsible for
opening/closing this unit.

Argument: PROMPT

Type: CHARACTER∗(∗)

Access: Read Only

Description: Prompt string. This string will be used to prompt for data from an interactive
terminal and/or will be written as a prefix to the input line for echo. If the
string ‘AUTO’ is specified, a prompt of the form ‘ n: ’, where “n” is the current
input line number (only lines read under the AUTO feature are counted), will
be generated.

Argument: MFIELD

Type: INTEGER

Access: Read Only

Description: Maximum number of data fields to be returned. The dimensions of each of the
output arrays described below must be greater than of equal to this number.

Argument: IOSTAT

Type: INTEGER

Access: Write Only

Description: ANSI FORTRAN I/O status:
IOSTAT < 0 End of File
IOSTAT = 0 Normal
IOSTAT > 0 Error

Argument: NFIELD

Type: INTEGER

Access: Write Only

Description: Number of data fields found on this logical record. If this value is less than
MFIELD, the excess fields are implicitly defined as null fields. If this value is
greater than MFIELD, the extra data fields are ignored.

Argument: KVALUE

13

Type: INTEGER Array

Access: Write Only

Description: Translation states of the data fields. The value of each element of this array is
interpreted as follows:

KVALUE Meaning
-1 This is a null field.
0 This is a non-numeric field; only CVALUE contains a spec-

ified value.
1 This is a REAL numeric field; CVALUE and RVALUE con-

tain specified values.
2 This is an INTEGER numeric field; CVALUE, RVALUE,

and IVALUE contain specified values.

The dimension of this array must be at least MFIELD.

Argument: CVALUE

Type: CHARACTER∗(∗) Array

Access: Write Only

Description: Character values of the data fields. The data will be left-justified and either
blank-filled or truncated. The value in this array is set blank for a null field.
The dimension of this array must be at least MFIELD. The character element
size may be any value set by the caller.

Argument: IVALUE

Type: INTEGER Array

Access: Write Only

Description: Integer values of the data fields. The value in this array is set to zero for a
null or non-INTEGER field. The dimension of this array must be at least
MFIELD.

Argument: RVALUE

Type: REAL Array

Access: Write Only

Description: Floating-point values of the data fields. The value in this array is set to zero
for a null or non-REAL field. The dimension of this array must be at least
MFIELD.

3.3.2 Internal Input Routine (FFISTR)

Internal input (i.e., a character string) is parsed via FFISTR using character strings supplied through
FFISTR’s argument list. FFISTR returns the parsed data field values defined in the input string.
If a string contains a continuation character, a flag is returned to the user indicating that another
string should be supplied to complete the logical record. The arguments to FFISTR are prescribed
below.

CALL FFISTR(LINE, MFIELD, IDCONT, NFIELD, KVALUE,

* CVALUE, IVALUE, RVALUE)

14

Argument: LINE

Type: CHARACTER∗(∗)

Access: Read Only

Description: Input string. This argument contains the data to be parsed.

Argument: MFIELD

Type: INTEGER

Access: Read Only

Description: Maximum number of data fields to be returned. The dimensions of each of the
output arrays described below must be greater than of equal to this number.

Argument: IDCONT

Type: INTEGER

Access: Read and Write

Description: Continuation flag. 0 means no continuation. On input, this flag indicates if the
previous string contained a continuation indicator. In this case, the current
string will be treated as part of the same logical record as the previous string.

Argument: NFIELD

Type: INTEGER

Access: Write Only

Description: Number of data fields found on this logical record. If this value is less than
MFIELD, the excess fields are implicitly defined as null fields. If this value is
greater than MFIELD, the extra data fields are ignored.

Argument: KVALUE

Type: INTEGER Array

Access: Write Only

Description: Translation states of the data fields. The value of each element of this array is
interpreted as follows:

KVALUE Meaning
-1 This is a null field.
0 This is a non-numeric field; only CVALUE contains a spec-

ified value.
1 This is a REAL numeric field; CVALUE and RVALUE con-

tain specified values.
2 This is an INTEGER numeric field; CVALUE, RVALUE,

and IVALUE contain specified values.

The dimension of this array must be at least MFIELD.

Argument: CVALUE

Type: CHARACTER∗(∗) Array

Access: Write Only

15

Description: Character values of the data fields. The data will be left-justified and either
blank-filled or truncated. The value in this array is set blank for a null field.
The dimension of this array must be at least MFIELD. The character element
size may be any value set by the caller.

Argument: IVALUE

Type: INTEGER Array

Access: Write Only

Description: Integer values of the data fields. The value in this array is set to zero for a
null or non-INTEGER field. The dimension of this array must be at least
MFIELD.

Argument: RVALUE

Type: REAL Array

Access: Write Only

Description: Floating-point values of the data fields. The value in this array is set to zero
for a null or non-REAL field. The dimension of this array must be at least
MFIELD.

3.3.3 Basic Examples

The following examples illustrate the operation of the SUPES free field input system.

INPUT RECORDS:

verb, 1 2. * continue on next line

key=5

Results returned from FREFLD:
NFIELD = 5

I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)
1 0 VERB 0.000E+00 0
2 2 1 1.00 1
3 2 2. 2.00 2
4 0 KEY 0.000E+00 0
5 2 5 5.00 5

INPUT RECORD:

$ this is a comment line

Results returned from FREFLD:
NFIELD = 0

16

I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)
1 -1 0.000E+00 0
2 -1 0.000E+00 0
3 -1 0.000E+00 0
4 -1 0.000E+00 0
5 -1 0.000E+00 0

INPUT RECORD:

10,,

Results returned from FREFLD:
NFIELD = 2

I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)
1 2 10 10.0 10
2 -1 0.000E+00 0
3 -1 0.000E+00 0
4 -1 0.000E+00 0
5 -1 0.000E+00 0

INPUT RECORD:

’Quoted strings’, ’5 ’, ’$*,=’’"’ $ rest is comment

Results returned from FREFLD:
NFIELD = 3

I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)
1 0 Quoted strings 0.000E+00 0
2 2 5 50.0 50
3 0 $*,=’" 0.000E+00 0
4 -1 0.000E+00 0
5 -1 0.000E+00 0

INPUT RECORD:

quotes’s

Results returned from FREFLD:
NFIELD = 1

I KVALUE(I) CVALUE(I) RVALUE(I) IVALUE(I)
1 0 QUOTES’S 0.000E+00 0
2 -1 0.000E+00 0
3 -1 0.000E+00 0
4 -1 0.000E+00 0
5 -1 0.000E+00 0

3.4 Utility Routines

The three routines described in this section, together with the FORTRAN extension library rou-
tines EXREAD and EXUPCS, are the only externals called by FREFLD and FFISTR. Application

17

programs built on top of FREFLD and FFISTR may find further use for these routines.

3.4.1 Get Literal Input Line (GETINP)

All I/O for FREFLD is done through this subroutine. This routine was intentionally separated from
FREFLD so that the caller can obtain an unmodified line of input (such as a problem title) via the
same I/O stream. Applications which require a more complex syntax than SUPES provides (e.g.,
algebraic operations) may find GETINP advantageous.

There are four modes of operation of GETINP depending upon the specification of the I/O units
KIN and KOUT. Each of these modes, which are summarized in the following table, may be useful
to various applications.

KIN KOUT Source Echo
0 0 Standard Input Standard Output
0 M Standard Input Standard Output and File (M)
N M File (N) File (M)
N 0 File (N) none

The arguments to GETINP are prescribed below.

CALL GETINP(KIN, KOUT, PROMPT, LINE, IOSTAT)

Argument: KIN

Type: INTEGER

Access: Read Only

Description: Unit from which to read input. If zero, read from the standard input device
(terminal or batch deck) and echo to the standard output device (terminal or
batch log). non-zero, the caller is responsible for opening/closing this unit.

Argument: KOUT

Type: INTEGER

Access: Read Only

Description: Unit to which to echo input. If zero, do not echo other than to the standard
output device as described above. If non-zero, the caller is responsible for
opening/closing this unit.

Argument: PROMPT

Type: CHARACTER∗(∗)

Access: Read Only

Description: Prompt string. This string will be used to prompt for data from an interactive
terminal and/or will be written as a prefix to the input line for echo. If the
string ‘AUTO’ is specified, a prompt of the form ‘ n: ’, where ”n” is the current
input line number (only lines read under the AUTO feature are counted), will
be generated.

Argument: LINE

Type: CHARACTER∗(∗)

18

Access: Write Only

Description: Line of input. This string will be blank-filled or truncated, if necessary. The
length of the string is set by the caller, but should not exceed 132.

Argument: IOSTAT

Type: INTEGER

Access: Write Only

Description: ANSI FORTRAN I/O status:
IOSTAT < 0 End of File
IOSTAT = 0 Normal
IOSTAT > 0 Error

3.4.2 Strip Leading/Trailing Blanks (STRIPB)

This routine is called by FREFLD and FFISTR from several locations. It may be useful to other
applications as well. Note that STRIPB does not modify nor copy the input string, but simply
returns the location of the first and last non- blank characters. If a substring is passed, these
locations are relative to the beginning of the substring. For example, if the substring STRING(N:)
is passed to STRIPB, STRING(ILEFT+N-1:IRIGHT+N-1) would represent the result.

The arguments to STRIPB are prescribed below.

CALL STRIPB(STRING, ILEFT, IRIGHT)

Argument: STRING

Type: CHARACTER∗(∗)

Access: Read Only

Description: Any character string.

Argument: ILEFT

Type: INTEGER

Access: Write Only

Description: Relative index of the first non-blank character in STRING. ILEFT =
LEN(STRING) + 1 if STRING = ‘ ’.

Argument: IRIGHT

Type: INTEGER

Access: Write Only

Description: Relative index of the last non-blank character in STRING. IRIGHT = 0 if
STRING = ‘ ’.

3.4.3 Process Quoted String (QUOTED)

This routine is called by FFISTR to remove the delimiting quotes from a quoted string. It also
converts any repeated quotes into single quotes. (This is a common method for indicating internal
quotes.)

19

The arguments to QUOTED are prescribed below.

CALL QUOTED (STRING, ILEFT, IRIGHT)

Argument: STRING

Type: CHARACTER∗(∗)

Access: Read and Write

Description: Any character string. On output, the first and last quotes are removed, and
internal (repeated) quotes are converted to single quotes. If the trailing quote
is omitted, then the remainder of the input record (excluding trailing blanks)
is considered part of the quoted string.

Argument: ILEFT

Type: INTEGER

Access: Write Only

Description: Relative index of the first character in the string. This is always the location
of the first character inside the leading quote.

Argument: IRIGHT

Type: INTEGER

Access: Write Only

Description: Relative index of the last character in STRING. IRIGHT = 0 if the quoted
string is null.

20

Chapter 4

MEMORY MANAGER

The purpose of the memory manager utilities is to allow an applications programmer to write
standard, readable FORTRAN-77 code while employing dynamic memory management for REAL,
INTEGER, LOGICAL and CHARACTER type arrays.

Because the array sizes in most programs are problem dependent, a program’s memory requirements
are not known until the program is running. Since FORTRAN-77 does not provide for dynamic
memory allocation, the programmer has to either predict the maximum memory requirement or use
machine dependent requests for memory. In addition, dynamic memory allocation is an error prone
exercise which tends to make the source code difficult to read and maintain.

In SUPES, the memory manager utilities are written in standard FORTRAN-77 and provide an
interface which encourages readable coding and efficient use of memory resources. Machine depen-
dencies are isolated through the use of the extension library (Chapter 5). All memory requests are
in terms of numeric storage units for numeric data (integer, real, or logical) and character storage
units for character data [1].

An important design feature of the memory manager is that the memory manager can be supported
even when the system-dependent dynamic memory request routines are not implemented on a sys-
tem. In this case, the memory manager will operate, allocating space from a user-supplied work
array. This mode is described as dynamic allocation of static memory. Thus, modification of a user’s
application program is minimal on systems where dynamic memory is not implemented.

All user entry points to memory manager routines begin with either “MD” or “MC.” In most cases,
the “MD” routines are used for numeric data, while the “MC” routines are for character data. In
some cases, however, the routines are interchangeable. These routines are documented as synonyms.

In this document, the term “Mx” is used to refer simultaneously to both “MD” and “MC” routines.
Thus, MxRSRV is a reference to both MDRSRV and MCRSRV subroutines.

The memory manager utility is divided into three categories; basic routines, advanced routines, and
development aids. These categories will be discussed in sections 4.2 through 4.4.

4.1 Indexing System

In order to use the memory manager properly, the user must first understand the concept of using
a base array with indices for accessing memory address locations. At the core of this concept

21

is FORTRAN’s convention of passing SUBROUTINE array references by address. The memory
manager references all memory addresses relative to the addresses of user-supplied base arrays—
one each for numeric and character data. A reference to memory is made in terms of a pointer
to these base arrays. Specifically, the memory manager determines an indexing parameter by first
determining the offset of the appropriate memory location relative to the address of the correct base
array. The index is then computed in terms of the proper storage units (either character or numeric).
Note that the resulting indexes may take on a wide range of values, including negative numbers.

The base arrays must comply with the following rules:

1. Numeric base arrays must be of type INTEGER, REAL, or LOGICAL. Modified word length
storage arrays such as INTEGER∗ 2 or REAL∗ 8 will result in invalid indexes with no error
message.

2. Character base arrays must be declared CHARACTER∗ 1.

The following FORTRAN statements define valid base arrays:

DIMENSION NUMBAS(1)

CHARACTER*1 CHRBAS(1)

Only one base array from each category (numeric and character) may be used in a program.

In order to use memory allocated by the memory manager, the user merely needs to pass the base
array with the correct offsetting index to a subprogram. For example, for a base arrays NUMBAS
and CHRBAS and indexes IP1 and IP2, a subroutine call would be:

CALL SUBBIE (NUMBAS(IP1), CHRBAS(IP2))

Although the programmer is not restricted to using the allocated memory in subprograms only, the
recommended usage for the memory manager is to allocate dynamic arrays in the main program
and then pass them to subroutines.

4.2 Basic Routines

The basic memory manager routines are those which are most commonly used and require little
understanding of the internal workings of the utility.

4.2.1 Initialize (MDINIT/MCINIT)

The memory manager must be initialized with a calls to MDINIT and MCINIT before any memory
can be allocated. The main purpose of the initialization is to determine the location of the numeric
and character base arrays in memory. MDINIT must be called first, and MCINIT second. In the case
where character dynamic memory is not used, MCINIT need not be called. When calling MxINIT,
the user must pass (explicitly or implicitly) subscript 1 of the base array.

CALL MDINIT (NUMBAS(1))

CALL MCINIT (CHRBAS(1))

Argument: NUMBAS

22

Type: INTEGER, LOGICAL or REAL Array or Array Element

Access: Read Only

Description: This array is used as a base reference to all dynamically allocated numeric
memory.

Argument: CHRBAS

Type: CHARACTER∗ 1 Array or Array Element

Access: Read Only

Description: This array is used as a base reference to all dynamically allocated character
memory.

4.2.2 Define Dynamic Array (MDRSRV/MCRSRV)

MxRSRV declares new dynamic arrays. The user specifies the space required, and an index to the
new space is returned. Note that, by default, the contents of the new storage are not initialized to
any specific value. MxFILL may be used for data initialization.

CALL MDRSRV (NAME, NEWIDX, NEWLEN)

CALL MCRSRV (NAME, NEWIDX, NEWLEN)

Argument: NAME

Type: CHARACTER∗(∗)

Access: Read Only

Description: This is the name of the new dynamic array. The memory manager will add
this name to its internal dictionary; each array must have a unique name. The
first eight characters beginning with a nonblank are used for comparison. This
comparison is case-insensitive and embedded blanks are significant.

Argument: NEWIDX

Type: INTEGER

Access: Write Only

Description: This is the index to storage allocated to this dynamic array relative to the
base array. The index for numeric data is to be used with the numeric array
supplied to MDINIT, and character data is to be used with the character array
supplied to MCINIT.

Argument: NEWLEN

Type: INTEGER

Access: Read Only

Description: This is the length to be reserved for the new array. Any nonnegative number
is acceptable. A zero length does not cause any storage to be allocated and
returns an index equal to one. The value of NEWLEN is in terms of numeric
storage units for numeric data and character storage units for character data.

23

4.2.3 Delete Dynamic Array (MDDEL/MCDEL)

MDDEL and MCDEL release the memory that is allocated to a dynamic array for numeric and
character storage, respectively.

CALL MDDEL (NAME)

CALL MCDEL (NAME)

Argument: NAME

Type: CHARACTER∗(∗)

Access: Read Only

Description: This is the name of the dynamic array which is to be deleted. The array name
must match an existing name in the dictionary and be of the correct type
(numeric or character) for the operation. The first eight characters beginning
with a nonblank are used for comparison. This comparison is case-insensitive
and embedded blanks are significant.

4.2.4 Reserve Memory Block (MDGET/MCGET)

NOTE: This capability has been removed. Calling MDGET or MCGET will have no affect.

MDGET and MCGET reserve a contiguous block of memory without associating the block of mem-
ory with an array. MxGET should be called prior to a series of calls to MxRSRV to improve efficiency
and to reduce memory fragmentation. Further discussion of the operation of MxGET is found in
section 6.2.

CALL MDGET (MNGET)

CALL MCGET (MNGET)

Argument: MNGET

Type: INTEGER

Access: Read only

Description: This specifies the desired contiguous block size in numeric storage units for
MDGET or character storage units for MCGET.

4.2.5 Release Unallocated Memory (MDGIVE/MCGIVE)

NOTE: This capability has been removed. Calling MDGIVE or MCGIVE will have no affect.

MxGIVE causes the memory manager to return unused storage to the operating system, if possible.
MDGIVE and MCGIVE are synonyms.

CALL MDGIVE ()

CALL MCGIVE ()

24

4.2.6 Obtain Statistics (MDSTAT/MCSTAT)

MxSTAT returns memory manager statistics. MxSTAT provides a method for error checking, and
thus should be used after other calls to the memory manager to assure no errors have occurred.
MDSTAT and MCSTAT are synonyms.

CALL MDSTAT (MNERRS, MNUSED)

CALL MCSTAT (MNERRS, MNUSED)

Argument: MNERRS

Type: INTEGER

Access: Write Only

Description: This is the total number of errors detected by the memory manager during the
current execution.

Argument: MNUSED

Type: INTEGER

Access: Write Only

Description: This is the total number of storage units that are currently allocated to dy-
namic arrays. MDSTAT returns the numeric storage in numeric storage units,
and MCSTAT returns the character storage in character storage units. If any
storage has been requested in the deferred mode and not yet allocated by the
memory manager (Section 4.3.8), this storage is counted as though it were
actually allocated.

4.2.7 Print Error Summary (MDEROR/MCEROR)

MxEROR prints a summary of all errors detected by the memory manager. The return status of
the last memory manager routine called is also printed. MxEROR should be called any time an
error is detected by a call to MxSTAT. Table 4.1 lists the error codes. MDEROR and MCEROR
are synonyms.

Several of the error codes listed in Table 4.1 are not a result of a user error, but are used to signal
an internal error, or that an internal array is full. For example, the table which records the names
of the arrays allocated with MxRSRV may not be large enough for the application. In this case, the
memory manager subroutines must be modified to accommodate the user. A local support person
should perform this task.

CALL MDEROR (IUNIT)

CALL MCEROR (IUNIT)

Argument: IUNIT

Type: INTEGER

Access: Read Only

Description: This is the FORTRAN unit number of the output device.

25

Table 4.1: Memory Manager Error Codes

ERROR CODES
1 SUCCESSFUL COMPLETION
2 UNABLE TO GET REQUESTED SPACE FROM SYSTEM
3 DATA MANAGER NOT INITIALIZED
4 DATA MANAGER WAS PREVIOUSLY INITIALIZED
5 NAME NOT FOUND IN DICTIONARY
6 NAME ALREADY EXISTS IN DICTIONARY
7 ILLEGAL LENGTH REQUEST
8 UNKNOWN DATA TYPE
9 ∗ DICTIONARY IS FULL

10 ∗ VOID TABLE IS FULL
11 ∗ MEMORY BLOCK TABLE IS FULL
12 ∗ OVERLAPPING VOIDS - INTERNAL ERROR
13 ∗ OVERLAPPING MEMORY BLOCKS - INTERNAL ERROR
14 ∗ INVALID MEMORY BLOCK - EXTENSION LIBRARY ERROR
15 INVALID ERROR CODE
16 INVALID INPUT NAME
17 ILLEGAL CALL WHILE IN DEFER MODE
18 NAME IS OF WRONG TYPE FOR OPERATION

∗ These are not user errors.

4.2.8 Enable data initialization (MDFILL/MCFILL)

MxFILL defines a fill/initialization pattern that is to be used for newly allocated storage. MDFILL
and MCFILL are in effect until canceled by MDFOFF and MCFOFF, respectively. MDFILL and
MCFILL operate independently.

CALL MDFILL (NUMDAT)

CALL MCFILL (CHRDAT)

Argument: NUMDAT

Type: INTEGER, REAL or LOGICAL

Access: Read Only

Description: This is the initialization datum for new storage allocated with MDRSRV or
extended with MDLONG. The memory manager makes no attempt to identify
the type (INTEGER, REAL, or LOGICAL) of either the initialization datum
or of a newly allocated array. Instead, the bit of the initialization datum
is stored without interpretation. This pattern is then used to initialize new
storage. Since the internal machine representation of REAL data is different
than INTEGER data (or LOGICAL data), the user may experience unexpected
results when dynamic memory is used as a numeric type which is different from
the type of the initialization datum.

Argument: CHRDAT

Type: CHARACTER∗(∗)

Access: Read Only

26

Description: This is the initialization data for new storage allocated with MCRSRV or
extended with MCLONG. Only the first character of CHRDAT is used.

4.2.9 Cancel Data Initialization (MDFOFF/MCFOFF)

MDFOFF and MCFOFF cancel the data initialization for numeric and character data, respectively.
MDFOFF and MCFOFF operate independently.

CALL MDFOFF ()

CALL MCFOFF ()

4.2.10 Basic Example

DIMENSION BASE(1)

CHARACTER*1 CBASE(1)

CALL MDINIT (BASE(1))

CALL MCINIT (CBASE(1))

CALL MDGET (20)

CALL MDFILL (0.)

CALL MCFILL (’Z’)

CALL MDRSRV (’FIRST’, I1, 10)

CALL MDRSRV (’SECOND’, I2, 10)

CALL MCRSRV (’THIRD’, I3, 10)

CALL MDDEL (’SECOND’)

CALL MDGIVE ()

CALL MDSTAT (MNERRS, MNUSED)

IF (MNERRS .NE. 0) THEN

CALL MDEROR (6)

STOP

END IF

CALL SUBPRG (BASE(I1), CBASE(I3))

4.3 Advanced Routines

The advanced routines are supplied to give added capability to the user who is interested in more
sophisticated manipulation of memory. These routines are never necessary, but may be very desir-
able.

4.3.1 Rename Dynamic Array (MDNAME/MCNAME)

MxNAME renames a dynamic array from NAME1 to NAME2. The location of the array is not
changed, nor is its length. MDNAME is used for numeric arrays and MCNAME is used for character
arrays.

CALL MDNAME (NAME1, NAME2)

CALL MCNAME (NAME1, NAME2)

27

Argument: NAME1

Type: CHARACTER∗(∗)

Access: Read Only

Description: This is the old name of the array. The first eight characters after the first
nonblank are used for comparison. This comparison is case-insensitive and
embedded blanks are significant.

Argument: NAME2

Type: CHARACTER∗(∗)

Access: Read Only

Description: This is the new name of the array. The first eight characters starting from a
nonblank are used for the new name. This comparison is case-insensitive and
embedded blanks are significant.

4.3.2 Adjust Dynamic Array Length (MDLONG/MCLONG)

MxLONG changes the length of a dynamic array. The memory manager will relocate the array and
move its data if storage cannot be extended at the array’s current location. The user should assume
that MxLONG invalidates the previous index to this array if the array is extended. MDLONG is
used for numeric arrays and MCLONG is used for character arrays.

CALL MDLONG (NAME, NEWIDX, NEWLEN)

CALL MCLONG (NAME, NEWIDX, NEWLEN)

Argument: NAME

Type: CHARACTER∗(∗)

Access: Read Only

Description: This is the name of the dynamic array which the user wishes to extend or
shorten.

Argument: NEWIDX

Type: INTEGER

Access: Write Only

Description: This is the new index to the dynamic array.

Argument: NEWLEN

Type: INTEGER

Access: Read Only

Description: This is the new length for the dynamic array in numeric storage units for
MDLONG and in character storage units for MCLONG.

28

4.3.3 Locate Dynamic Array (MDFIND/MCFIND)

MxFIND returns the index and length of storage allocated to a dynamic array. This routine would
be used if the index from an earlier call to MxRSRV was not available in a particular program
segment. MDFIND is used for numeric arrays and MCFIND is used for character arrays.

CALL MDFIND (NAME, NEWIDX, NEWLEN)

CALL MCFIND (NAME, NEWIDX, NEWLEN)

Argument: NAME

Type: CHARACTER∗(∗)

Access: Read Only

Description: This is the name of the dynamic array to be located.

Argument: NEWIDX

Type: INTEGER

Access: Write Only

Description: This is the index to the dynamic array relative to the user’s reference array.
Because an index can take any value, the returned value cannot be used as an
indication of success or failure of MxFIND. MxSTAT should always be used
for error checking.

Argument: NEWLEN

Type: INTEGER

Access: Write Only

Description: This is the length of the dynamic array in numeric or character storage units
for MDFIND and MCFIND, respectively.

4.3.4 Compress Storage (MDCOMP/MCCOMP)

MxCOMP causes fragmented memory to be consolidated. Note that this may cause array storage
locations to change. It is important to realize that all indexes must be recalculated by calling
MxFIND after a compress operation. A call to MxCOMP prior to MxGIVE will result in the return
of the maximum memory to the system. MDCOMP and MCCOMP are synonyms.

CALL MDCOMP ()

CALL MCCOMP ()

4.3.5 Error Flag Query (MDERPT/MCERPT)

MxERPT requests the memory manager to report the number of errors accumulated for a particular
error flag. A programmer may use this to determine more detailed information than what is available
from MxSTAT. MDERPT and MCERPT are synonyms.

CALL MDERPT (IFLAG, NERRS)

CALL MCERPT (IFLAG, NERRS)

29

Argument: IFLAG

Type: INTEGER

Access: Read Only

Description: IFLAG specifies the flag number for which the user wishes an error count. A
list of the error flags can be printed by calling MxEROR.

Argument: NERRS

Type: INTEGER

Access: Write Only

Description: NERSS will contain the error count.

4.3.6 Modify Error Count (MDEFIX/MCEFIX)

MxEFIX allows the error count for a particular error flag to be set to a specified value. MDEFIX
and MCEFIX are synonyms.

CALL MDEFIX (IFLAG, NERRS)

CALL MCEFIX (IFLAG, NERRS)

Argument: IFLAG

Type: INTEGER

Access: Read Only

Description: IFLAG specifies the number of the error flag which will be set. See Table 4.1
for a list and description of these flags.

Argument: NERRS

Type: INTEGER

Access: Read Only

Description: NERRS is the new value for the error count.

4.3.7 Report Last Error (MDLAST/MCLAST)

MxLAST requests the flag number of the last error. MDLAST and MCLAST are synonyms.

CALL MDLAST (IFLAG)

CALL MCLAST (IFLAG)

Argument: IFLAG

Type: INTEGER

Access: Write Only

Description: IFLAG is the number of the last error caused by a previous call to the memory
manager.

30

4.3.8 Enable Deferred Memory Mode (MDWAIT/MCWAIT)

NOTE: This capability has been removed. Calling MDWAIT or MCWAIT will have no affect.

MxWAIT enables the deferred memory mode of the memory manager. In this mode, any requests
for additional memory with MxRSRV are satisfied only if a system call is not required. If a system
call is required, the request for memory is deferred and will be satisfied when the deferred mode is
canceled by calling MxEXEC or a call to MxLONG requires a system call for memory for an existing
array. MDWAIT and MCWAIT are synonyms.

Because the deferred mode may not actually provide array space at the time a call to MxRSRV
is made, the base array pointer returned by MxRSRV may not be valid. In fact, for a deferred
request, an invalid index is intentionally returned so that the requested array space cannot be
erroneously used. When the deferred memory requests are eventually satisfied (by calling MxEXEC),
the indexes are automatically, asynchronously updated by the memory manager. Thus, upon return
from MxEXEC the indexes used in MxRSRV will have a valid value.

The deferred mode is provided as a means of reducing the sometimes time-consuming calls to the
operating system for new memory. A similar efficiency could be realized by judicious use of MxGET,
but the deferred mode relieves the user of the burden of adding all memory requests before calling
MxRSRV. The deferred mode is a sophisticated capability and should not be enabled if the user
does not understand its implications.

The deferred mode must be used as follows:

1. The deferred mode begins with a call to MxWAIT.

2. Except for MxPRNT, all memory manager calls are permissible in the deferred mode.

3. Indexes returned by MxRSRV, MxFIND, and MxLONG may not be assigned to other variables
while the deferred mode is in effect.

4. Dynamic memory may not be accessed while the deferred mode is in effect.

5. The deferred mode is canceled by calling MxEXEC.

CALL MDWAIT ()

CALL MCWAIT ()

4.3.9 Execute Deferred Memory Requests (MDEXEC/MCEXEC)

NOTE: This capability has been removed. Calling MDEXEC or MCEXEC will have no affect.

MxEXEC causes all deferred mode memory requests to be satisfied with a single call to the operating
system for the required memory. The deferred mode is also canceled. MDEXEC and MCEXEC are
synonyms.

After returning from MxEXEC, all indexes to array space which was deferred are updated.

CALL MDEXEC ()

CALL MCEXEC ()

31

4.3.10 Report storage information (MDMEMS/MCMEMS)

MxMEMS reports numeric or character storage information. This information may be useful for
planning storage strategies during code development and for flow control during code execution.

CALL MDMEMS (NSUA, NSUD, NSUV, NSULV)

CALL MCMEMS (NSUA, NSUD, NSUV, NSULV)

Argument: NSUA

Type: INTEGER

Access: Write Only

Description: NSUA is the number of numeric/character storage units currently allocated
and not deferred.

Argument: NSUD

Type: INTEGER

Access: Write Only

Description: NSUD is the number of numeric/character storage units currently deferred.

Argument: NSUV

Type: INTEGER

Access: Write Only

Description: NSUV is the amount of void space in numeric or character storage units. Note
that MDMEMS and MCMEMS may be reporting the same space for NSUV,
but in different units.

Argument: NSULV

Type: INTEGER

Access: Write Only

Description: NSULV is the size of the largest void space in numeric or character storage
units. Note that MDMEMS and MCMEMS may be reporting the same space
for NSULV, but in different units.

4.4 Development Aids

The routines in this section are designed to aid the programmer during development of a program,
and probably would not be used during execution of a mature program, except as a response to a
memory manager error.

4.4.1 List Storage Tables (MDLIST/MCLIST)

MxLIST prints the contents of the memory manager’s internal tables. Section 6.2 describes these
tables. MDLIST and MCLIST are synonyms.

32

CALL MDLIST (IUNIT)

CALL MCLIST (IUNIT)

Argument: IUNIT

Type: INTEGER

Access: Read Only

Description: This is the FORTRAN unit number of the output device.

4.4.2 Print Dynamic Array (MDPRNT/MCPRNT)

MxPRNT prints the contents of an individual numeric and character array, respectively.

CALL MDPRNT (NAME, IUNIT, TYPE)

CALL MCPRNT (NAME, IUNIT, NGRUP)

Argument: NAME

Type: CHARACTER∗(∗)

Access: Read Only

Description: This is the name of the array to be printed.

Argument: IUNIT

Type: INTEGER

Access: Read Only

Description: This is the FORTRAN unit number of the output device.

Argument: TYPE

Type: CHARACTER∗(∗)

Access: Read Only

Description: TYPE indicates the data type of the data to be printed; ”R” for REAL, or ”I”
for INTEGER. Note that this is not necessarily the declared type of the base
array.

Argument: NGRUP

Type: INTEGER

Access: Read Only

Description: NGRUP controls the number of characters that are grouped together without
intervening spaces. Since the storage is declared as a CHARACTER∗ 1 array,
NGRUP allows the user to format the output consistent with longer character
strings.

33

4.4.3 Debug Printing (MDDEBG/MCDEBG)

Debug printing causes error messages to be printed by the memory manager at the time an error
is detected. The default is no debug printing — errors are detected, but are only reported when
requested by MxSTAT and MxERPT. MDDEBG and MCDEBG are synonyms.

CALL MDDEBG (IUNIT)

CALL MCDEBG (IUNIT)

Argument: IUNIT

Type: INTEGER

Access: Read Only

Description: IUNIT controls debug printing. A negative or zero value turns debug printing
off. A positive value of IUNIT will cause any error messages to be printed to
FORTRAN unit number IUNIT.

34

Chapter 5

EXTENSION LIBRARY

The SUPES Extension Library provides a uniform interface to necessary operating system functions
which are not included in the ANSI FORTRAN-77 standard. While the Extension Library itself is
implemented in the C programming language, the interface from a FORTRAN calling program is
implemented in the same manner as in previous versions of SUPES [2]. Thus, in the sections below
which describe the calling sequence, the calls are defined accordingly. This package makes it possible
to maintain many codes on different operating systems with a single point of support for system
dependencies. Moreover, this maintenance is done via a single set of source files which should not
only reduce the time involved in bookkeeping, but allow for the procedures for building a SUPES
library to be codified as well. These routines provide very basic operating system support; they are
not intended to implement clever features of a favorite system, to make FORTRAN behave like a
more elegant language, or to improve execution efficiency.

Each module included in the SUPES Extension Library must satisfy the following criteria:

1. The routine must provide a service which is beneficial to a wide range of users.

2. This task cannot be accomplished via standard FORTRAN.

3. This capability must be generic to scientific computers. Extension library routines must be
supportable on virtually any system.

The SUPES Extension Library routines are designed to minimize the effort required to implement
this software on a new operating system. This is especially true given that the current single set of
source files handle a variety of system architectures and software configurations, making those files
useful as starting points for a new port.

Operating system dependencies have been isolated at the lowest possible level with the major dif-
ficulty of a specific port being that of supplying the proper FORTRAN interface with each C sub-
program module.

5.1 User Interface Routines

This section prescribes the calling sequence for FORTRAN Extension routines that are meant to be
called directly from application programs.

35

5.1.1 Get Today’s Date (EXDATE)

CALL EXDATE(STRING)

Argument: STRING

Type: CHARACTER∗8

Access: Write Only

Description: Current date formatted as “MM/DD/YY” where “MM”, “DD”, and “YY”
are two digit integers representing the month, day, and year, respectively. For
example, “07/04/86” would be returned on July 4, 1986.

5.1.2 Get Time of Day (EXTIME)

CALL EXTIME(STRING)

Argument: STRING

Type: CHARACTER∗8

Access: Write Only

Description: Current time formatted as “HH:MM:SS” where “HH”, “MM”, and “SS” are
two digit integers representing the hour (00-24), minute, and second, respec-
tively. For example, “16:30:00” would be returned at 4:30 PM.

5.1.3 Get Accumulated Processor Time (EXCPUS)

CALL EXCPUS(CPUSEC)

Argument: CPUSEC

Type: REAL

Access: Write Only

Description: Accumulated CPU time in seconds. The base time is undefined; only relative
times are valid. This is an unweighted value which measures performance
rather than cost.

5.1.4 Get Operating Environment Parameters (EXPARM)

CALL EXPARM(HARD,SOFT,MODE,KCSU,KNSU,IDAU)

Argument: HARD

Type: CHARACTER∗8

Access: Write Only

Description: System Hardware ID. For example, “CRAY-1/S”.

Argument: SOFT

36

Type: CHARACTER∗8

Access: Write Only

Description: System Software ID. For example, “COS 1.11”.

Argument: MODE

Type: INTEGER

Access: Write Only

Description: Job mode: 0 = batch, 1=interactive. For this purpose, an interactive environ-
ment means that the user can respond to unanticipated questions.

Argument: KCSU

Type: INTEGER

Access: Write Only

Description: Number of character storage units per base system unit.

Argument: KNSU

Type: INTEGER

Access: Write Only

Description: Number of numeric storage units per base system unit.

Argument: IDAU

Type: INTEGER

Access: Write Only

Description: Units of storage which define the size of unformatted direct access I/O records:
0 = character, 1 = numeric. (For a more in-depth discussion of this topic, the
reader is referred to the VAX FORTRAN manual, section 13.1.21.)

The ANSI FORTRAN standard defines a character storage unit as the amount of memory required
to store one CHARACTER element. A numeric storage unit is the amount of memory required to
store one INTEGER, LOGICAL, or REAL element. For this routine, a base system unit is defined as
the smallest unit of memory which holds an integral number of both character and numeric storage
units.

The last three parameters above can be used to calculate the proper value for the RECL specifier on
the OPEN statement for a direct access I/O unit. For example, if NUM is the number of numeric
values to be contained on a record and IDAU=0, set RECL = (NUM * (KCSU + KNSU-1)) /
KCSU.

5.1.5 Get Unit File Name or Symbol Value (EXNAME)

CALL EXNAME(IUNIT,NAME,LN)

Argument: IUNIT

Type: INTEGER

37

Access: Read Only

Description: Unit number if IUNIT > 0, or symbol ID if IUNIT ≤ 0.

Argument: NAME

Type: CHARACTER∗(∗)

Access: Write Only

Description: File name or symbol value obtained from the operating system. It is assumed
that the unit/file name or symbol/value linkage will be passed to this routine
at program activation.

Argument: LN

Type: INTEGER

Access: Write Only

Description: Effective length of the string returned in NAME. Zero indicates that no name
or value was available.

This routine provides a standard interface for establishing execution time unit/file connection on
operating systems (such as CTSS) which do not support pre-connection of FORTRAN I/O units.
The returned string is used with the FILE specifier in an OPEN statement, as in the following
example.

CALL EXNAME(10,NAME,LN)

OPEN(10,FILE=NAME(1:LN),...)

The symbol mode of this routine provides a standard path through which to pass messages at
program activation. An example use is identifying the target graphics device for a code which
supports multiple devices.

5.2 Utility Support Routines

The routines prescribed in this section are intended primarily to support the SUPES free field input
and memory manager utilities. While calling these routines directly will not disturb the internal
operation of these other facilities, the use of EXMEMY (section 5.2.5) in conjunction with the
memory manager is discouraged.

5.2.1 Convert String to Uppercase (EXUPCS)

CALL EXUPCS(STRING)

Argument: STRING

Type: CHARACTER∗(∗)

Access: Read and Write

Description: Character string for which lowercase letters will be translated to uppercase.
All other characters which are not in the printable ASCII character set are
converted to spaces.

38

5.2.2 Prompt/Read/Echo Input Record (EXREAD)

CALL EXREAD(PROMPT,INPUT,IOSTAT)

Argument: PROMPT

Type: CHARACTER∗(∗)

Access: Read Only

Description: Prompt string.

Argument: INPUT

Type: CHARACTER∗(∗)

Access: Write Only

Description: Input record from standard input device.

Argument: IOSTAT

Type: INTEGER

Access: Write Only

Description: ANSI FORTRAN I/O status:
IOSTAT < 0 End of File
IOSTAT = 0 Normal
IOSTAT > 0 Error

This routine will prompt for input if the standard input device is interactive. In any case, the input
line will be echoed to the standard output device with the prompt string as a prefix.

5.2.3 Evaluate Numeric Storage Location (IXLNUM)

NUMLOC = IXLNUM(NUMVAR)

Argument: NUMVAR

Type: INTEGER or REAL

Access: Read Only

Description: Any numeric variable.

Argument: NUMLOC

Type: INTEGER

Access: Write Only

Description: Numeric location of NUMVAR. This value is an address measured in ANSI
FORTRAN numeric storage units.

39

5.2.4 Evaluate Character Storage Location (IXLCHR)

CHRLOC = IXLCHR(CHRVAR)

Argument: CHRVAR

Type: CHARACTER

Access: Read Only

Description: Any character variable.

Argument: CHRLOC

Type: INTEGER

Access: Write Only

Description: Character location of CHRVAR. This value is an address measured in ANSI
FORTRAN character storage units.

5.2.5 Get/Release Memory Block (EXMEMY)

CALL EXMEMY(MEMREQ,LOCBLK,MEMRTN)

Argument: MEMREQ

Type: INTEGER

Access: Read Only

Description: Number of numeric storage units to allocate if MEMREQ > 0, or release if
MEMREQ < 0.

Argument: LOCBLK

Type: INTEGER

Access: Read (release) or Write (allocate)

Description: Numeric location of memory block. This value is an address measured in ANSI
FORTRAN numeric storage units. Only memory previously allocated to the
caller via EXMEMY can be released via EXMEMY.

Argument: MEMRTN

Type: INTEGER

Access: Write Only

Description: Size of memory block returned in numeric storage units.

In allocate mode, MEMRTN < MEMREQ indicates that a sufficient amount of storage could not be
obtained from the operating system. MEMRTN > MEMREQ indicates that the operating system rounded
up the storage request.

In release mode, memory will always be released from the high end of the block downward.
MEMRTN = 0 indicates that the entire block was returned to the operating system.

40

Chapter 6

SUPPORT PROGRAMMER’S
GUIDE

This chapter documents the internal architecture for SUPES. It is intended to guide the maintenance
of SUPES and support of SUPES on new operating systems.

6.1 Free Field Input

The SUPES free field input system consists of four subroutines: FREFLD (section 3.3.1), FFISTR
(section 3.3.2), GETINP (section 3.4.1), and STRIPB (section 3.4.2). All of these routines are written
in fully standard ANSI FORTRAN.

FREFLD calls the extension library routine EXUPCS (section 5.2.1).

FFISTR is the input line parsing routine. It is called by FREFLD, but the user is free to call it
independently. The input line may be of arbitrary length.

GETINP calls the extension library routine EXREAD (section 5.2.2).

6.1.1 Implementation Notes on FREFLD

This section contains a basic outline of the internal operation of the free field input system and other
supplemental information. More complete documentation is contained within the code itself.

FREFLD is organized into five phases:

1. All the output arrays are initialized to their default values.

2. The next input record is obtained via GETINP. Processing of a continuation line begins with
this phase.

3. The effective portion of the input line is isolated by stripping any comment and leading/trailing
blanks. A flag is set if a continuation line is to follow this record.

4. All field separators are made uniform. This phase streamlines the main processing loop which
follows.

41

5. Successive fields are extracted, translated, and categorized until the input line is exhausted.
After the maximum number of fields is reached, fields are counted but not processed further.

Upon leaving the main translation loop, the routine is restarted at phase 2 if the continuation flag
is set.

The only errors returned by FREFLD are any returned from GETINP.

A data field is left-justified to define a CHARACTER value, but must be right-justified to obtain a
numeric value. An internal READ is used to decode a numeric value from a data field. FREFLD
relies upon the IOSTAT specifier to determine if the field represents a valid numeric format; this
presents the possibility that some non-standard numeric strings may be interpreted inconsistently by
various operating systems. Default numeric values are overwritten if and only if IOSTAT indicates
a valid translation.

CHARACTER data manipulation tends to be the area of lowest reliability for FORTRAN compilers,
especially with supercomputers. An attempt was made in coding FREFLD to minimize the risk of
triggering compiler bugs by manipulating pointers rather than shifting CHARACTER strings.

6.1.2 Test Program for FREFLD

A simple test program which calls FREFLD is included with the SUPES free field input system.
FREFLD is instructed to digest data entered via the standard input device (e.g., keyboard), then
the results are dumped to the standard output device (e.g., screen). This program should always be
run to verify proper operation of FREFLD on a new operating system or compiler. Application pro-
grammers are encouraged to experiment with this program to learn what to expect from FREFLD.
A sample session from a Sun 4/60 Workstation follows:

% ffrtest <-- At the system prompt, enter the program name.

1: This is an example <-- At the SUPES prompt, the user enters a line, etc.

NFIELD = 4

I KV(I) CV(I) RV(I) IV(I)

1 0 "THIS " 0. 0

2 2 "IS " 0. 0

3 0 "AN " 0. 0

4 0 "EXAMPLE " 0. 0

5 -1 " " 0. 0

2: Another line = example.

NFIELD = 3

I KV(I) CV(I) RV(I) IV(I)

1 0 "ANOTHER " 0. 0

2 0 "LINE " 0. 0

3 0 "EXAMPLE. " 0. 0

4 -1 " " 0. 0

5 -1 " " 0. 0

3: This is a further 3.e5

NFIELD = 6

I KV(I) CV(I) RV(I) IV(I)

1 0 "THIS " 0. 0

2 2 "IS " 0. 0

3 2 "A " 0. 0

42

4 0 "FURTHER " 0. 0

5 2 "3.E5 " 3.000E+05 300000

4: exit

NFIELD = 1

I KV(I) CV(I) RV(I) IV(I)

1 0 "EXIT " 0. 0

2 -1 " " 0. 0

3 -1 " " 0. 0

4 -1 " " 0. 0

5 -1 " " 0. 0

5: ^C <-- To exit, the user enters a ^C.

%

6.2 Memory Manager

This section includes details of the internal operations of the memory manager, assumptions used in
the memory manager, and details on the implementation of the memory manager on systems which
do not support the extension library.

6.2.1 Table Architecture and Maintenance

The bookkeeping for the memory manager is accomplished with three tables; a memory block table,
a void area table, and a dictionary.

The memory block table maintains a record of contiguous blocks of memory that have been received
from the operating system. If a series of requests causes separate blocks to become contiguous, these
blocks are joined. The beginning location and length of each memory block is recorded, and the
table is sorted in location order.

Within each memory block, sections of memory that are not currently allocated to arrays are recorded
in the void area table. As in the case of the memory block table, contiguous voids are joined and
this table is sorted in location order.

The dictionary relates storage locations with eight character array names. The dictionary is sorted
via the default FORTRAN collating sequence. All characters (including blanks) are significant. All
names are converted to upper case then blank filled or truncated to eight characters. In addition to
the array name, the dictionary stores the location and length of each dynamic array.

Any call for memory (MDGET or MDRSRV) will be satisfied in one of two ways:

1. If a void of sufficient size is available, then this void will be used for the new array (MDRSRV).
In the case of MDGET, no further action is taken.

2. An extension library call (EXMEMY) is made to get more memory from the system.

A request to extend an array (MDLONG) is satisfied in one of three ways:

1. If a void of sufficient size exists at the end of the array, then this space is allocated to the
array.

2. If a void large enough for the extended array exists elsewhere in memory, the array is moved
to this location. Note that the data is actually shifted and the pointer is updated.

43

3. An extension library call (EXMEMY) is made to get more memory from the system.

A call to MDCOMP will cause all arrays within each memory block to be moved to the lower
addresses (pointers) within that memory block. Thus, all voids in the block will be joined at the
end of the block.

A call to MDGIVE will attempt to return memory to the system. Only voids at the end of a memory
block are subject to this attempt, and the system may accept only portions of these. Thus a call to
MDCOMP followed by MDGIVE will release the maximum memory to the system.

6.2.2 Non-ANSI FORTRAN Assumptions

Although the memory manager is written in standard FORTRAN-77, it does depend on some
assumptions which are not part of the ANSI standard. These assumptions are:

1. The contents of a word are not checked nor altered by an INTEGER assignment. Data is
moved by MDLONG or MDCOMP as INTEGER variables.

2. Strong typing is not enforced between dummy and actual arguments. This allows the same
base array to pass storage to any INTEGER, REAL, or LOGICAL array.

3. Array bounds are not enforced. Thus, any value is a valid subscript for the base array.

4. All dynamically allocated memory must remain fixed in relation to the base array.

6.2.3 Test Program

In order to aid the installation of the memory manager at a new site, an interactive test program
has been written which allows the user to exercise each of the features of the memory manager and
insure that it is operating properly. While the proper implementation of the memory management
test program requires an in-depth examination of the corresponding source file, a short test run on
a Cray running the UNICOS operating system follows (comments are included after an arrow, <--):

% memtest <-- At the system prompt, enter program name.

FUNC: mdinit <-- At the SUPES prompt, the user enters a string, etc.

FUNC: mcinit

FUNC: mdwait

FUNC: mdrsrv real1 108

POINTER: -65733

FUNC: mcrsrv char 850

POINTER: -532696

FUNC: mdrsrv real2 108

POINTER: -65733

FUNC: mdexec

POINTER BEFORE -65733

POINTER AFTER 17879 <-- Having the pointer updated is vital!

FUNC: mdlist

**

0 * * * * * * * D I C T I O N A R Y * * * * * * *

44

0 NUMERIC CHARACTER

NAME LOCATION LENGTH LENGTH

1 CHAR 17664 107 850

2 REAL1 17771 108 -1

3 REAL2 17879 108 -1

0 TOTAL 323 850

0 * * * V O I D T A B L E * * *

0 LOCATION LENGTH

1 17987 61

0 TOTAL 61

**

0 * * * * * * O R D E R E D L I S T * * * * * *

0 NUMERIC CHARACTER

NAME LOCATION LENGTH LENGTH

1 CHAR 17664 107 850

2 REAL1 17771 108 -1

3 REAL2 17879 108 -1

4 17987 61

BLOCK SIZE 384 850

ALLOCATED TOTAL 384 850

GRAND TOTAL 384 850

FUNC: exit

STOP in MEMTEST

%

6.3 Extension Library Implementation

Implementing the SUPES extension library on a new operating system requires a firm understanding
of that system, but should not require a great deal of programming. Since the package is by definition
system dependent, it is impossible to predict the exact procedure which will be required to implement
these routines on a given operating system. This section provides some general guidelines and hints
compiled from experience in implementing the package on several very different systems.

As has been mentioned previously, this version represents a change in philosophy regarding the
procedure for implementing a port of the extension library. Specifically, many of the features of the
extension library require a richer data type than is available in ANSI FORTRAN 77. For example,
the requirement to do pointer assignment for the memory management made it desirable to utilize
a more flexible programming language. The language chosen was C. A direct consequence of this
is that the entire SUPES extension library is now coded in a single set of source files across all
supported machines. Among the advantages are:

45

1. It reduces the amount of bookkeeping that is necessary to maintain the library across a number
of machine architectures at a given site,

2. It now allows for a codified approach to building the library on any given machine, and finally,

3. It permits one to use the current source as an example for a future port.

Of course, these advantages do come at a cost. The FORTRAN–C interface must now be handled at
the source level in the extension library. This is an extremely system dependent area. However, most
systems do allow for such a scenario, and, accordingly, it tends to be documented quite extensively.

The code should be well commented and references to appropriate system manuals should be in-
cluded.

6.3.1 Implementation Notes for Modules

The format of the date for EXDATE must be strictly observed. Many systems supply a date service
routine which formats the date in a different style. Conversion to the SUPES format should be
straightforward.

Most systems provide a time of day service routine which formats the time in the desired style.
Some systems also return fractional seconds which can easily be trimmed off. In any case, the
format specified by EXTIME must be strictly observed.

EXCPUS is intended to measure performance rather than cost. The quantity returned by EXCPUS
should be raw CPU seconds; any weighting for memory use or priority should be removed. I/O time
should be included only if it is performed by the CPU.

The hardware ID string for EXPARM should reflect both the manufacturer and model of the processor.
For example, “VAX 8600” rather than just “VAX” allows the user to make sense of the CPU time
returned by EXCPUS.

The software ID string should reflect the release of the operating system in use, such as “COS 1.11”.
It is not a trivial exercise to provide all pertinent information in eight characters for ad hoc systems
like CTSS which vary widely between installations. For example, the string “CFTLIB14” has been
used to indicate a variation of the SUPES package for CTSS using CFTLIB and the CFT 1.14
compiler.

On most systems KCSU will give the number of characters per numeric word and KNSU will be
unity. For a hypothetical 36-bit processor which allows 8-bit characters to cross word boundaries,
KCSU=9 and KNSU=2 would define the storage relationship.

The proper value for IDAU should always be indicated in the reference manual for the compiler
where it discusses Unformatted Direct Access files.

The unit/file mode of EXNAME should follow as closely as possible to whatever convention the par-
ticular operating system uses for connecting a FORTRAN I/O unit to a file at execution time. This
feature should be easy to implement on systems which support pre-connection. Support for units
1-99 should be sufficient.

The symbol mode feature of EXNAME should be designed to obtain messages from the system level
procedure which activates the program. Eight characters per symbol is a reasonable limit. Support
for symbols 0-7 should be adequate.

Support for EXNAME not only requires coding the routine itself, but also designing the system proce-
dure level interface. This interface should always be designed before coding EXNAME. It should fit as
cleanly as possible into normal techniques for writing procedures for the system.

46

EXREAD must provide a prompt for an interactive device and guarantee that input is echoed. This
requires a careful determination of the current execution environment. For example, EXREAD must
be able to handle input from a script file as well as from a terminal. Any automatic echo service
provided by the operating system should be employed wherever possible, as long as the user supplied
prompt appears along with the input data echo.

In all instances, the C programming language provides a clean method for returning the address for
IXLNUM. In some cases it may be necessary to convert the address to numeric units. For example,
addresses on VMS must be divided by four to convert from bytes to numeric storage units. The same
cannot necessarily be said for a character address as returned by IXLCHR. The reader is referred to
the source file ixlchr.c for further details on how to attack this problem.

EXMEMY is the most crucial routine in the extension library—and one the primary reasons for choosing
to do the extension library in C. As opposed to in the past, this latest approach has made it one
of the most straightforward in the entire extension library. However, care should still be taken
to ensure that both memory block locations and sizes are measured in numeric storage units. In
the current version of SUPES, memory is allocated in blocks of 512 bytes (a number which can
be changed at compile time) to improve performance. EXMEMY should return the precise amount of
memory allocated. Any memory that is given by the system, but not requested by the user is kept
track of in a void table by the memory manager. So, it is generally unnecessary to keep track of
memory blocks allocated via EXMEMY.

6.3.2 Extension Library Test Program

A short program which exercises all features of the SUPES extension library is available. This
program should be considered a starting point for testing a new implementation. Other tests which
more extensively exercise complex modules, such as EXMEMY, should be developed as needed. An
example session on a Sun 4/60 Workstation follows (with comments offset by an arrow, <--):

% setenv FOR001 junk.dat <-- Test EXNAME.

% exttest <-- At the system prompt, invoke the procedure.

TST: ldkj <-- At the SUPES prompt, the user enters a string.

Input line = LDKJ <-- The input line is returned in upper case.

Date = 12/18/89

Time = 09:58:05

Unit 1 name = junk.dat

Unit 10 name =

Symbol 1 =

Processor = Sun4 System = OS4.0.3c Mode = 1

Character, Numeric, D/A Units: 4 1 0

Memory block location and length: 24700 128

Numeric difference = 4

Character difference = 4

CPU time = 7.00000E-02

47

6.4 Installation Documentation Guidelines

A supplement to this document should be written for each operating system on which SUPES is
installed. As a minimum, this supplement should include:

1. How to access the SUPES library and link it to an applications program. Individual copies of
SUPES should never be propagated as this reduces the quality assurance level of SUPES.

2. How to interface from the operating system to EXNAME for both unit/ file mode and symbol
mode.

3. How to interface to EXREAD via an interactive device. Information such as how to signal an
end of file should be specified.

Any known bugs or idiosyncrasies.

The installation supplements for several operating systems are included in the Appendix.

48

Bibliography

[1] American-2017 National Standard Programming Language FORTRAN, American-2017 Na-
tional Standards Institute, Inc., ANSI X3.9-1978, New York, 1978.

[2] D. P. Flanagan, W. C. Mills-Curran, and L. M. Taylor, “SUPES A Software Utilities Pack-
age for the Engineering Sciences,” SAND86-0911, Sandia -2017 National Laboratories, Albu-
querque, NM, September 1986.

49

Appendix A

SITE SUPPLEMENTS

A.1 Site Supplement for Unix / Linux Systems

A.1.1 Linking

In what follows, an example of how the SUPES routines can be linked to an application program is
given:

% f77 -o your-executable your-source.f -L<library directory path> -lsupes

A.1.2 Defining Unit/File or Symbol/Value for EXNAME

A file name is connected to a unit number via an environment variable of the form FOR0nn, where
“nn” is a two digit integer indicating the FORTRAN unit number. For example, if the user is
currently running under the shell program /bin/csh, the required sequence is:

% setenv FOR007 cards.dat

This causes the following FORTRAN statements to open ’cards.dat’ on unit 7.

CALL EXNAME(7, FILENM, LN)

IF(LN .EQ. 0) THEN ! EXNAME returns a zero for LN if no ASSIGN

! has been performed. Use the system default.

OPEN(7)

ELSE ! I’ve found an ASSIGN’d filename, use it.

OPEN(7, FILE=FILENM)

ENDIF

From the Bourne Shell, /bin/sh, the following sequence is required:

50

$ export FOR007=cards.dat

If no file has been assigned, a system default file name of the form fort.nn, where “nn” is a one (if
less than ten) or two digit integer indicating the FORTRAN unit number that will be written.

Similarly, EXNAME looks for an environment variable of the form EXTnn. So that

% setenv EXT05 hello #csh

% export EXT05=hello # bourne shell

will cause the following call to return NAME=“hello” and LN=5.

CALL EXNAME(-1, NAME, LN)

A.1.3 Interface to EXREAD

EXREAD will read from stdin and automatically echo to stdout.

51

	Title
	INTRODUCTION
	INSTALLATION PROCEDURE
	FREE FIELD INPUT
	Keyword/Value Input System
	Syntax Rules
	Free Field Input Routines
	External Input Routine (FREFLD)
	Internal Input Routine (FFISTR)
	Basic Examples

	Utility Routines
	Get Literal Input Line (GETINP)
	Strip Leading/Trailing Blanks (STRIPB)
	Process Quoted String (QUOTED)

	MEMORY MANAGER
	Indexing System
	Basic Routines
	Initialize (MDINIT/MCINIT)
	Define Dynamic Array (MDRSRV/MCRSRV)
	Delete Dynamic Array (MDDEL/MCDEL)
	Reserve Memory Block (MDGET/MCGET)
	Release Unallocated Memory (MDGIVE/MCGIVE)
	Obtain Statistics (MDSTAT/MCSTAT)
	Print Error Summary (MDEROR/MCEROR)
	Enable data initialization (MDFILL/MCFILL)
	Cancel Data Initialization (MDFOFF/MCFOFF)
	Basic Example

	Advanced Routines
	Rename Dynamic Array (MDNAME/MCNAME)
	Adjust Dynamic Array Length (MDLONG/MCLONG)
	Locate Dynamic Array (MDFIND/MCFIND)
	Compress Storage (MDCOMP/MCCOMP)
	Error Flag Query (MDERPT/MCERPT)
	Modify Error Count (MDEFIX/MCEFIX)
	Report Last Error (MDLAST/MCLAST)
	Enable Deferred Memory Mode (MDWAIT/MCWAIT)
	Execute Deferred Memory Requests (MDEXEC/MCEXEC)
	Report storage information (MDMEMS/MCMEMS)

	Development Aids
	List Storage Tables (MDLIST/MCLIST)
	Print Dynamic Array (MDPRNT/MCPRNT)
	Debug Printing (MDDEBG/MCDEBG)

	EXTENSION LIBRARY
	User Interface Routines
	Get Today's Date (EXDATE)
	Get Time of Day (EXTIME)
	Get Accumulated Processor Time (EXCPUS)
	Get Operating Environment Parameters (EXPARM)
	Get Unit File Name or Symbol Value (EXNAME)

	Utility Support Routines
	Convert String to Uppercase (EXUPCS)
	Prompt/Read/Echo Input Record (EXREAD)
	Evaluate Numeric Storage Location (IXLNUM)
	Evaluate Character Storage Location (IXLCHR)
	Get/Release Memory Block (EXMEMY)

	SUPPORT PROGRAMMER'S GUIDE
	Free Field Input
	Implementation Notes on FREFLD
	Test Program for FREFLD

	Memory Manager
	Table Architecture and Maintenance
	Non-ANSI FORTRAN Assumptions
	Test Program

	Extension Library Implementation
	Implementation Notes for Modules
	Extension Library Test Program

	Installation Documentation Guidelines

	SITE SUPPLEMENTS
	Site Supplement for Unix / Linux Systems
	Linking
	Defining Unit/File or Symbol/Value for EXNAME
	Interface to EXREAD

