
Exceptional Service in the National Interest

 Operated for the U.S. Department of Energy by

 Sandia Corporation

 Albuquerque, New Mexico 87185-0557

 date: January 12, 2006

 to: J.M. Redmond, 1524

 Distribution

 from: D. Todd Griffith, 1524

subject: User’s Guide for mat2exo: A program for writing Matlab mat-file data to Exodus II format

Enclosure(1) details the user’s guide for a program which translates mesh data from Matlab mat-file

format to Exodus II format. This tool, mat2exo, is the inverse of the commonly used tool exo2mat

which translates Exodus II data to the Matlab mat-file format. These tools provide a means for pre-

processing an Exodus II model file or post-processing an Exodus II results file using Matlab.

A large number of SNL analysts use the Matlab software package for post-processing of data

because it provides for easy access and clear understanding of the data, and contains an abundance

of data processing commands as well as a high-level programming capability. Typically, an output

Exodus II database from a code such as Salinas or Presto is translated to Matlab format using the

exo2mat translation tool. This permits the information in the Exodus II database to be loaded into

the Matlab environment for data interrogation, manipulation, comparison, or many other post-

processing needs. Sometimes, it is desired that the data manipulated in Matlab be written back to the

Exodus II format so that post-processed calculations of the full mesh results can be visualized using

tools such as Ensight. One example of this is the subtraction of two sets of nodal variable solutions

in Matlab, and subsequent writing of this new result back to Exodus II so that the difference between

the two nodal solutions can be visualized. The subject of this note is a tool for translating from

Matlab format to Exodus II format, mat2exo.

Distribution - 1 - January 12, 2006

(page intentionally left blank)

Distribution - 2 - January 12, 2006

Enclosure(1)

User’s Guide for mat2exo:

A program for writing Matlab mat-file data to

Exodus II format

D. Todd Griffith

Structural Dynamics Research Department

Sandia National Laboratories

Albuquerque, New Mexico 87185-0557

January 12, 2006

Distribution - 3 - January 12, 2006

USAGE

mat2exo file.mat

 where file.mat is a Matlab data file which contains the mesh information and results data to

be converted to Exodus II format. The output is a file named file.exo saved in the working directory.

The Exodus II format is well documented in Reference 1. It is expected that mat2exo will be added

to the SEACAS system of tools on the LAN.

INTRODUCTION

A large number of SNL analysts use the Matlab software package for post-processing of data

because it provides for easy access and clear understanding of the data, and contains an abundance

of data processing commands as well as a high-level programming capability. Typically, an output

Exodus II database from a code such as Salinas or Presto is translated to Matlab format using the

exo2mat translation tool. This permits the information in the Exodus II database to be loaded into

the Matlab environment for data interrogation, manipulation, comparison, or many other post-

processing needs. Sometimes, it is desired that the data manipulated in Matlab be written back to the

Exodus II format so that the full post-processed calculations of the mesh results can be visualized

using tools such as Ensight. One example of this is the subtraction of two sets of nodal variable

solutions in Matlab, and subsequent writing of this new result back to Exodus II so that the

difference between the two nodal solutions can be visualized. The subject of this note is a tool for

translating from Matlab format to Exodus II format, mat2exo.

The original versions of exo2mat and mat2exo were written by Mazen Tabarra and Richard

Naething, respectively, though much modification has been made since.

SPECIAL USAGE NOTES

It is expected that mat2exo will serve as the inverse translation tool for exo2mat. In a typical

mat2exo conversion, only a limited number of the variables from the original Exodus II file will be

modified with the vast majority of the variables such as those related to the mesh geometry (nodal

locations, number of elements, element types, etc) left unchanged. Therefore, the typical bi-

directional conversion path should involve:

1) generating an Exodus II database from a meshing code such as Cubit or a simulation code

such as Salinas or Presto,

2) converting it to Matlab mat-file format using exo2mat,

3) loading the mat-file into the Matlab software environment,

4) manipulation of the variables of interest in the Matlab workspace,

5) clearing the workspace of variables not part of the Exodus environment and saving all the

remaining variables in the workspace to a new Matlab mat-file,

6) converting the new Matlab mat-file to Exodus II using mat2exo.

This path preserves the static information in the database with relative ease. For example, typically

it is desired that the geometry or mesh information remain unchanged and available for the inverse

translation back to Exodus II. It is preferred that no extraneous variables to the original Exodus file

be loaded into the Matlab workspace; therefore, the workspace should be cleared of all variables

Distribution - 4 - January 12, 2006

prior to loading the mat-file. There is no limitation on the type of manipulation of the workspace

variables of interest; however, when the new mat-file is saved the workspace should contain

variables whose names, dimensions, and data types are unchanged from the original mat-file – a set

of conditions which mat2exo assumes in order to execute properly (a listing of these variables is

given in Tables 1-3). Typically, the only changes to take place are the numerical values for the

workspace variables of interest; however, in some special cases such as database size reduction,

which will be discussed later, do involve removing some workspace variables.

On the other hand, there is no requirement that this bi-directional path be followed. As long as all of

the variables expected by mat2exo are located in the mat-file to be converted, mat2exo can be

executed successfully. An example of this could be the generation of Exodus II database

information originating within Matlab using a specialized code.

Additionally we note that saving the database information to a new file in Matlab is quite simple.

All workspace variables can simply be stored in the binary file newfile.mat using the following

command:

>> save newfile.mat

UPDATES MADE TO EXO2MAT

In this development, some additional coding was performed to update the exo2mat database

converter. The prior version did not fully translate side set and node set information, thus these

updates were made to preserve this information in the exo2mat step so that it would exist at the

mat2exo stage. Of course the sideset information is now also available for manipulation while the

database is resident in a Matlab session. As mentioned in the previous section, it is imperative that

variables contained in the Matlab mat-file have the proper variable name, dimension and datatype

for the mat2exo converter to execute properly. This is not a significant limitation because in a

typical transformation only a few variables will be modified. Furthermore, updates made to exo2mat

and mat2exo must be consistent in order for the bi-directional translation to execute properly. The

most recent versions of exo2mat and mat2exo, which are listed below in the revision history section,

should be used together. However, mat-files created using previous versions of exo2mat can be

translated to Exodus II using mat2exo as long as side set and node set information is ignored. In

Matlab, simply set the the number of side sets (nssets) and the number of node sets (nnsets) to zero

and save the mat-file. As an aside to this point, any group of data can be ignored in the mat2exo step

by setting the group count to zero; as another example, set the variable “nevars” to zero so that no

element variables will be written back to Exodus II.

Before proceeding to some of the uses of mat2exo, we look at the outputs of the updated exo2mat

program. In the following set of tables, we list the variables which are written by exo2mat and

provide the Matlab variable name, a description of the variable, and its data type. Essentially these

tables provide a list of variables available for processing and/or manipulation. We group these

variables according to the following categories: 1) Mesh and geometry information, 2) Side set and

node set information, and 3) Results information. The mat-file variables are presented in this

fashion in order to better detail the types of manipulations possible which generally will fall into the

categories of mesh/geometry-related, loading characteristics or boundary conditions, or results. The

mesh/geometry related information and the side set/node set information listed in Tables 1 and 2

Distribution - 5 - January 12, 2006

respectively are contents of a mesh file such as those generated by Cubit. The results information of

Table 3 is added to the database once this mesh file is used for an analysis run.

Table 1. Description of Mesh/Geometry Variables Contained in Mat-file

Matlab variable name Description of Variable Variable Type

Title Database title Character array

blk01, blk02, ….blkN…
Lists nodes for each element

in Nth element block
Double array

blkids
Lists identification numbers

associated with each block
Double array

blknames

String containing block

names (typically this is the

type of element in each

block)

Character array

elem_num_map
List of numbers associated

with the elements
Double array

naxes
Number of coordinate axes,

problem dimension
Double array

nblks Number of element blocks Double array

nelems Number of elements Double array

nnodes Number of nodes Double array

node_num_map
List of numbers associated

with the nodes
Double array

x0, y0, z0 Nodal coordinate values Double arrays

Distribution - 6 - January 12, 2006

Table 2. Node Set and Side Set Variables Information Contained in Mat-file

Matlab variable name Description of variable Variable type

nsids Node set ID list Double array

nnsets Number of node sets Double array

nnsnodes
Number of nodes in each

node set
Double array

nsfac01, nsfac02,

….nsfacN…

Distribution factors for Nth

node set
Double array

nsnod01, nsnod02,

….nsnodN…

List of nodes for Nth node

set
Double array

nnsdfac
Number of distribution

factors in each node set
Double array

ssids
Identification numbers

associated with the side sets
Double array

nssets Number of side sets Double array

ssfac01, ssfac02, ….ssfacN…
Side set distribution factors

for the Nth side set
Double array

ssnod01, ssnod02,

…ssnodeN...
Node list for Nth side set Double array

ssnum01, ssnum02,

…ssnumN…

List of number of nodes in

each element of the Nth side

set

Double array

sselem01, sselem02,

….sselemN…

List of elements in Nth side

set
Double array

ssside01, ssside02,

….sssideN…

Side numbers of each

element in Nth side set

(specifies sides

corresponding to sselemN)

Double array

nssdfac
Number of distribution

factors in each side set
Double array

nsssides
Number of sides in each side

set
Double array

Distribution - 7 - January 12, 2006

Table 3. Nodal, Elemental, and Global Variable Results Contained in Mat-file

Matlab variable name Description of variable Variable type

enames

String containing the names

of the elemental results

variables

Character array

evar01, evar02, evarN…

Elemental variable solution

values for the Nth elemental

variable

Double array

gnames
String containing the names

of the global results variables
Character array

gvar01, gvar02, …gvarN…

Global variable solution

values for the Nth global

variable

Double array

info

String containing information

records pertaining to the

model or analysis code used

Character array

nelems
Number of elements in

model
Double array

nevars Number of element variables Double array

ngvars Number of global variables Double array

nnames
String containing the names

of the nodal results variables
Character array

nnvars Number of nodal variables Double array

nvar01, nvar02,….nvarN…

Nodal variable solution

values for the Nth nodal

variable

Double array

nsteps

Number of time steps

(number of modes for

EigenAnalysis)

Double array

time
Time step values (mode

numbers for EigenAnalysis)
Double array

Distribution - 8 - January 12, 2006

EXAMPLE USES OF MAT2EXO

The primary intention for writing mat2exo is to provide a means of storing some numerical results

values from a mesh file modified within Matlab into an Exodus II database for the purpose of

visualization; however, there are many uses when considering the numerous core capabilities of

Matlab and specialized analyst-written Matlab codes for use in pre-processing or post-processing of

a mesh file. Some examples include:

1) Algebraic manipulation of results data (e.g. scaling)

2) Comparison of multiple mesh data sets (e.g. differencing)

3) Digital filtering of results (e.g. low-pass filtering)

4) Database size reduction (e.g. isolating a particular set of results)

5) Special geometry modifications/mesh distortion (e.g. changing the nodal locations)

6) Modifications for spatially dependent loadings (e.g. modifying side set distribution factors)

7) Processing and visualization of experimental data (e.g. writing test mode shapes for

visualization)

In the following sections, two examples are presented to demonstrate some useful modifications to

the Exodus II database within Matlab. The first example demonstrates a pre-processing

modification for defining loads which vary spatially, and in the second example a post-processing

example is demonstrated whereby a transient solution solved using an analyst written Matlab code is

written to Exodus II for visualization.

EXAMPLE #1. PRE-PROCESSING: SPECIFYING SPATIALLY DEPENDENT

LOAD FACTORS ON A SINGLE SIDE SET

A common requirement on a static or dynamic loading is that it vary in some fashion with position.

For example, a hydrostatic pressure loading on a submerged structure will vary linearly in the

coordinate describing the depth below the surface. More generally, the loading may require that its

distribution vary with an arbitrary function of the spatial coordinates, (, ,)f x y z . The following

example demonstrates how to define an arbitrary loading distribution in Matlab over a single side set

or node set.

When a mesh is created using a program such as Cubit, only the information in Tables 1 and 2

related to mesh/geometry information and side set/node set information is created. It is at this point

that one would desire to modify the load distribution factors in advance of the analysis run. Firstly,

the mesh file will need to be converted to Matlab mat-file format using exo2mat (i.e. exo2mat

modelfile.exo). Secondly, the mat-file (modelfile.mat) will be loaded into the Matlab workspace so

that the new load factors can be computed.

The mat-file will contain the side sets and node sets which were defined in the meshing program. The

load distribution factors, at this point, will all be set to one because this is the default of the meshing

program. In this example, a new side set will be created using the to-be-modified side set as a template

so that the original side set with unit load factors can be preserved for a future analysis. We are only

interested in changing the load distribution factors, so we can simply copy the other required

information (as described in Table 2) to the new side set variables. Firstly, we add one additional side

set to the side set count as follows:

Distribution - 9 - January 12, 2006

>> nssets = nssets +1;

and give the new side set a unique identification number (#100), for example, if we are adding a 7
th
 side

set

>> ssids(7) = 100;

Now, we look at copying some information that will not change in creating the new side set. This

information describes the nodes, elements, sides in the side set. In this example, we are only changing

the distribution factors for side set #01, so we copy the following information to the new side set #07.

>> ssnod07 = ssnod01;

>> ssnum07 = ssnum01;

>> sselem07 = sselem01;

>> ssside07 = ssside01;

>> nssdfac(7) = nssdfac(1);

>> nsssides(7) = nsssides(1);

The only remaining variable that must be specified for side set #07 is ssfac07, which contains the

distribution factors as a function of position. The operations required to create these distribution factors

are quite simple in Matlab. We simply need to identify the coordinates associated with the nodes in the

side set (‘X07’,’Y07’, and ‘Z07’), and then compute the distribution factors according to these nodal

coordinates.

>> X07 = x0(ssnod01);

>> Y07 = y0(ssnod01);

>> Z07 = z0(ssnod01);

>> ssfac07 = X07.*Y07.*sin(Z07);

We note that if a side set or node set is only to be modified without creating a new one, then the

previous four lines of code are sufficient to modify those values. Of course, additionally the analyst

may be interested in normalizing the distribution function (by dividing by the max value of the function

to ease the scaling of loads in the analysis code). The additional considerations above are only needed

to create a new side set. Here, we have arbitrarily chosen a distribution governed by

(, ,) sin()f x y z xy z= as an example, but any function can be chosen.

It should also be noted that the above example assumes the typical case where the nodes are numbered

sequentially in the “node_num_map” variable such that the coordinates of node 100; for example, are

given by the 100
th
 element of the nodal coordinate variable vectors (‘x0’,’y0’,’z0’). If this were not the

case one would need to do a simple search to find the proper coordinates of the nodes in the side set.

Finally, we clear the unnecessary variables, and save the new mat-file.

>> clear X07 Y07 Z07

>> save newmodelfile.mat

Distribution - 10 - January 12, 2006

The new Exodus II model file will result from a call to mat2exo (i.e. mat2exo newmodelfile.mat) and

the file newmodelfile.exo will be created.

Some other methods exist at SNL to perform this task which include specialized analyst written codes

for modifying the distribution factors or using “field” specifications in Patran. It is expected that this

path will be simpler, offering more capabilities because of the power of Matlab and the full bi-

directional capability contained in exo2mat and mat2exo.

EXAMPLE #2. POST-PROCESSING: MANIPULATION AND STORAGE OF

RESULTS VARIABLES FOR VISUALIZATION

The second example demonstrates a post-processing feature. Suppose that one desires to perform a

transient analysis on a system using a solution method which is not available in a code such as

Salinas. Here, the analyst is forced to write a specialized code to solve the problem off-line (using

Matlab, for example). Suppose that it is desired to visualize this set of calculations. In this example,

it is demonstrated how one can store a set of calculations (in the context of a transient structural

dynamics problem) in an Exodus II database for visualization.

In this example, we desire to apply a new technique in a transient solution process -- a model size

reduction technique enabling a solution to be accomplished by solving many fewer degrees of

freedom. The reduced order model is developed using full order system matrices and dof/node

mapping from Salinas and is solved using an analysis code in Matlab.

Once solved, we would like to visualize the displacement solution of the new reduced order model,

and for the purpose of evaluating the reduction technique we desire to visualize the difference

between the solution of the full order problem and the reduced order problem. There is no need to

go into any details about the model size reduction technique, but it should be noted that a special

transformation is needed to map from the reduced order system coordinates back to the A-set

(Salinas Analysis set) coordinates and then from the A-set to the G-set (Global set) coordinates for

storage in the Exodus II database. The method by which the G-set coordinates are reconstructed

from A-set coordinates is reported in a separate document [2]. For more discussion on the A-set and

G-set see References 3 and 4.

In our Matlab solution process, we deal with all nodal displacement solutions in G-set coordinates.

These include three sets of solutions: 1) the full order system solved by Salinas, 2) the full order

system solved in Matlab (just as a check of the dof/node mapping), and 3) the reduced order system

solved in Matlab. Additionally, we compute the difference between solutions 1) and 2) and the

difference in solutions 2) and 3). Thus we actually have 5 sets of solutions for nodal

“displacements” which consist of a total of 15 nodal variables (x,y, and z displacements for each

solution). The Exodus II output database from Salinas will serve as a template – this file can be

translated to mat-file format using exo2mat. Here we will be manipulating variables listed in Table

3, in this case nodal variables. The variables nvar01, nvar02, and nvar03 in the template file already

contain the x, y, and z displacements for the full order Salinas solution. All of the nodal variables

have dimensions of number of rows equal to the number of nodes in the model and number of

columns equal to the number of time steps solved. Firstly, we set the total number of nodal variables

to 15 in Matlab:

>> nnvars = 15;

Distribution - 11 - January 12, 2006

And, we must store our newly computed variable solutions resulting from the Matlab solution for the

full order system

>> nvar04 = DispX_Aset;

>> nvar05 = DispY_Aset;

>> nvar06 = DispZ_Aset;

and, the newly computed variables for the reduced order system:

>> nvar07 = DispX_Reduced;

>> nvar08 = DispY_Reduced;

>> nvar09 = DispZ_Reduced;

The differences (or error solutions) are stored as follows using simple matrix subtraction capability

in Matlab:

>> nvar10 = nvar01 - DispX_Aset;

>> nvar11 = nvar02 - DispY_Aset;

>> nvar12 = nvar03 - DispZ_Aset;

>> nvar13 = DispX_Aset - DispX_Reduced;

>> nvar14 = DispY_Aset - DispY_Reduced;

>> nvar15 = DispZ_Aset - DispZ_Reduced;

Finally, we save the workspace variables to a new mat-file and convert to Exodus II using mat2exo.

Now, the solutions computed in Matlab can be visualized in a program such as Ensight including

those of a reduced order model, and the differences in the nodal displacements. A key to this

process is being able to map the results to the proper coordinates, the G-set. As mentioned

previously, the details regarding mapping coordinates from A-set to G-set is described in a separate

document [2].

To demonstrate this feature, Figures 1 and 2 show a comparison of the displacement solution at a

particular time step for the Salinas solution and the reduced order solution in Matlab, respectively.

Aside from the reduced order method providing an accurate solution, we note that mat2exo provides

the means to assess visually the behavior and accuracy of the off-line solution. Figure 3, shows the

difference in these solutions.

Distribution - 12 - January 12, 2006

Figure 1. Displacement solution resulting from Salinas run (timestep = 72)

Figure 2. Displacement solution of reduced order model resulting from Matlab code (timestep = 72)

Distribution - 13 - January 12, 2006

Figure 3. Visualization of error solution computed in Matlab for solutions shown in Figures 1 and 2

In the following section, we note how to rename these nodal variables by modifying the “nnames”

variable. This is essentially a bookkeeping feature to be used to assign names to the variables so that

when loaded into a visualization program, it is clear which variables are being viewed. For example,

in Figures 1, 2 and 3 we have renamed the variables in Matlab as can be seen above the legend.

NOTE ON CHANGING RESULTS VARIABLE NAMES

In some cases, the manipulation of nodal, elemental, and global variables will result in the desire to

rename the newly constructed variables. For example, when the displacement nodal variables

(‘DispX’, ‘DispY’, ‘DispZ’) from two mesh files are differenced, we may wish to name the new

quantities, “DeltaX”, “DeltaY”, and “DeltaZ”. This name change/update can be accomplished in

Matlab by modifiying the “nnames” string, in this example. Other examples may involve updating

“blknames”, “gnames”, or “enames”.

The mat2exo code requires that the character strings associated with each variable name are

separated by line breaks in order to identify the individual variable names from the single stored

string array. In Matlab, it is a simple matter to create this invisible line break in the following way:

>> linebreak = sprintf(‘\n’);

where the notation should be very familiar to C programmers. For the nodal variables example

above we would define the following:

>> nnames = [‘DeltaX’,linebreak,’DeltaY’,linebreak,’DeltaZ’,linebreak];

Distribution - 14 - January 12, 2006

Of course, this can be automated (and should be for the case when many variables are to be named)

using string manipulation functions in Matlab.

Additionally, it is noted that for a 3D problem, the vector variable for a triad of matching variable

names ending in “X”, “Y”, and “Z” will be formed automatically in visualization programs such as

Ensight. Thus, in this example the variable “DeltaVec” will be formed automatically if this

convention is followed for naming of ‘DeltaX’, ‘DeltaY’, and ‘DeltaZ’.

REVISION HISTORY FOR MAT2EXO AND EXO2MAT

Prior to these developments, exo2mat existed as a nearly fully mature code in its translation ability

with a significant amount of coding performed in the past several years. Additional coding noted in

this memo was made only to provide exo2mat with the ability to fully write side set and node set

information to Matlab, and subsequently the ability to translate this information back to Exodus II

using mat2exo. A significant amount of coding had been accomplished for the mat2exo code only in

the core file input/output functions as well as the translation of the mesh and geometry related

information. However, no results information was translated, and of course no side set or node set

information was translated due to the previously mentioned deficiencies of exo2mat in writing this

information.

The following summarizes the recent known revision history for mat2exo and exo2mat.

mat2exo:

$mat2exo, Version 1.1, 8/21/2003 by Richard Naething

� Core file input/output functionality

� Mesh/geometry information

$mat2exo, Version 1.2, 9/7/2005 by D. Todd Griffith

� Results information

� Global, nodal and element variable names

� Writes global, nodal and element variable results

� Writes complete set of time steps (Version 1.1 skipped first step)

$mat2exo, Version 1.3 (in SEACAS and Salinas repository), 12/16/2005 by D. Todd Griffith

� Complete node set information

� node set numbers,

� node set distribution. factors, etc

� Complete side set information

� side set numbers

� side list and element list numbers

� side set distribution factors, etc.

exo2mat:

$exo2mat, Version 1.4 (in SEACAS repository), April 2003 by Garth Reese

� Core file input/output functionality

Distribution - 15 - January 12, 2006

� Mesh/geometry information

� Results information

$exo2mat, Version 1.5 (in SEACAS repository), August 2003

� Minor modifications

$exo2mat, Version 1.6(in SEACAS repository), September 2004

� Provisions made for Exodus files containing no side set distribution factors

$exo2mat, Version 1.7(in SEACAS repository), 1/12/2006 by D. Todd Griffith

� Complete node set information

� node set numbers,

� node set distribution. factors, etc

� Complete side set information

� side set numbers

� side list and element list numbers

� side set distribution factors, etc.

� Side set distribution factors written as double precision instead of integers

� Conditional provision made for Exodus file with no side set distribution factors

ACKNOWLEDGEMENTS

Dan Segalman provided several motivating examples which lead to the implementation of some of

the key features written into the mat2exo program. Dan also carefully reviewed this document.

Rick Naething provided a previous version of mat2exo, as well as much appreciated assistance in

issues related to linking the code with the Matlab and ExodusII libararies. Garth Reese provided a

previous working version of the exo2mat code, and provided assistance in making available the

updated mat2exo code in the Salinas Team software repository. Jerry Rouse and Tim Walsh

provided valuable feedback from the use of an earlier version of the mat2exo code. The SEACAS

Tools Team, in particular Greg Sjaardema, is also acknowledged for helping to track versions of

exo2mat and to make updates to their software repository.

REFERENCES

[1] Schoof, Larry A., and Yarberry, Victor R., EXODUS II: A Finite Element Data Model,

SAND92-2137, November 1995.

[2] Griffith, D. Todd, “Reconstructing G-set nodal variables from A-set nodal variables and

constraint relations,” Internal Memo, Sandia National Laboratories, January 2006.

[3] MSC/NASTRAN Primer, pgs. 142-143.

[4] Cook, R. D. and D. S. Malkaus, M. E. P., Concepts and Applications of Finite Element Analysis,

John Wiley & Sons, third edn., 1989, Chapter 9.1-3.

