
SAND92-2290
Unlimited Release

Printed December 1992

GJOIN:
A Program for Merging Two or More

GENESIS Databases

Gregory D. Sjaardema
Solid and Structural Mechanics Department

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

GJOIN is a two- or three-dimensional mesh combination program.GJOIN
combines two or more meshes written in theGENESIS mesh database format
into a singleGENESIS mesh. Selected nodes in the two meshes that are closer
than a specified distance can be combined The geometry of the mesh databases
can be modified by scaling, offsetting, revolving, and mirroring. The combined
meshes can be further modified by deleting, renaming, or combining material
blocks, sideset identifications, or nodeset identifications.GJOIN is one of the
mesh generation tools in the Sandia National Laboratories Engineering Analy-
sis Code Access System (SEACAS).GJOIN is typically used with the other
SEACAS mesh generation codesGEN3D, GENSHELL, GREPOS,
andAprepro.

Distribution
Category UC-705

4

Contents

1 Introduction .. 5
1.1 SEACAS Mesh Generation Toolbox .. 5
1.2 Introduction to the GENESIS File Format .. 7
1.3 Organization of Report ... 7

2 Commands .. 9
2.1 Command Syntax .. 9
2.2 Filename specification phase .. 10
2.3 Node combination and database modification phase 10

2.3.1 Details of the Node Combination Algorithm 11
2.4 General Command Processing Phase .. 13

2.4.1 TITLE .. 13
2.4.2 Blocks and Material .. 14
2.4.3 Nodesets .. 14
2.4.4 Sidesets .. 14
2.4.5 Finish ... 15
2.4.6 Add .. 15
2.4.7 Exit and End .. 15
2.4.8 Quit .. 15
2.4.9 Help ... 15

3 GJOIN Example Problem ... 17
4 References ... 21
A Old Style Command Input Syntax ... 23
B GJOIN Details .. 25
C The GENESIS Database Format .. 27
D GJOIN Example Problem Output .. 31

Figures

Figure 1. Structure of SEACAS Mesh Generation Toolbox 7
Figure 2. Geometry Definition for GJOIN Example Problem 19
Figure 3. Schematics of Mesh Primitives for GJOIN Example Problem 19
Figure 4. Mesh Resulting from GJOIN Example Problem 21

 can be
etting,
ting,
ions.

n

eering

 basic
g a set

n below,
1 Introduction

GJOIN is a two- or three-dimensional mesh combination program.GJOIN combines two or
more meshes written in theGENESIS11 mesh database format into a singleGENESIS
mesh. Selected nodes in the two meshes that are closer than a specified distance
combined. The geometry of the mesh databases can be modified by scaling, offs
revolving, and mirroring. The combined mesh can be further modified by dele
renaming, or combining material blocks, sideset identifications, or nodeset identificat

1.1 Sandia Engineering Analysis Code Access System Mesh Generatio
Toolbox

GJOIN is one of the mesh generation tools in the Sandia National Laboratories Engin
Analysis Code Access System (SEACAS)1. GJOIN is typically used with the other
SEACAS mesh generation codesFASTQ6, GEN3D2, GENSHELL2, GREPOS4, and
Aprepro7. Figure 1 shows the structure of the SEACAS mesh generation toolbox. The
premise underlying this toolbox is that complicated geometries can be generated usin
of small specialized codes.

Each of these codes has a specialized purpose, a short synopsis of each code is give
for more information consult the referenced documentation.

GEN3D Transforms a two-dimensional GENESIS database into a
three-dimensional GENESIS database. Several transforma-
tions are supported and additional transformations can be
easily added.2

GREPOS Transforms the geometry of a GENESIS database by scal-
ing, mirroring, offsetting, or rotating. It can also modify the
database by deleting or renaming material blocks, sideset
identifications, or nodeset identifications.4

Figure 1.Structure of SEACAS Mesh Generation Toolbox

PATRANFASTQ PATRAN

GJOIN GREPOS

FASTQ
BLOT

ApreproAprepro AnalysisAnalysis

INPUT FILES

2D GENESIS
GENSHELL

GEN3D
3D GENESIS

GREPOS GJOIN
5

 mesh
 com-

everal
tries.

r

naging
oblems

dify-
lem

the fi-
e

hroni-
nsions

n key
ut
FASTQ Interactive two-dimensional finite element mesh generation
program. Includes several mesh generation options includ-
ing paving.6

APREPRO An algebraic preprocessing program which is used to param-
eterize finite element analyses. Includes a unit conversion
system and material database access routines.7

GENSHELL Transforms a two-dimensional GENESIS database into a
three-dimensional shell GENESIS database. Several trans-
formations are supported and additional transformations can
be easily added.2

NUMBERS Calculates several properties of an EXODUS file, including
mass properties, timesteps, condition numbers, cavity vol-
umes, and others.9

BLOT The primary graphical two-dimensional and three-dimen-
sional postprocessing code. It includes deformed mesh plots,
contour plots, shaded fringe plots, variable versus variable
and time history plots, and distance versus variable plots.5

The SEACAS mesh generation toolbox is a simpler approach to three-dimensional
generation than the automatic and general-purpose programs that are available from
mercial vendors. Many complicated three-dimensional geometries are composed of s
primitives that can be defined in terms of transformations of two-dimensional geome
Each of the primitives can be meshed usingFASTQ andGEN3D, and then joined togethe
usingGJOIN.

This approach does; however, have some inherent difficulties. The biggest being ma
and synchronizing several related files. For example, the meshes form some large pr
can require more than one hundred files containingFASTQ, GEN3D, GJOIN, andGREPOS
input files; temporary GENESIS files; and parameter files. Manually building and mo
ing a mesh this complicated is obviously very difficult and time consuming. This prob
has typically been minimized at SNL through the use of theUNIX* make† program and
Aprepro. Make is used to build a set of dependencies between the various pieces of
nite element model. The analyst can then change files as needed and simply typmake

mesh to generate the mesh. If the dependencies have been entered correctly,make will re-
build only those portions of the mesh that are affected by the changed file. The sync
zation problem (that is, ensuring that all of the separate pieces have compatible dime
and discretizations) is typically solved by creating a few parameter files which contai
dimensions and discretization information.Aprepro is then used to preprocess the inp
files and insert the key dimensions and discretization information into the input files.

*UNIX is a registered trademark of UNIX Systems Laboratories Inc.
† See your UNIX documentation for more information on make. Typically this is done by entering

the commandman 1 make
6

f the
ational
er read
esh

 loca-
aterial
ad ap-

 used
ibed

sing
ll ele-

arbitrary
k ID.

 with-
n mul-
y which
1.2 Introduction to the GENESIS File Format

The GENESIS mesh database file format is the geometry definition portion o
EXODUS database file format used in the Engineering Sciences Center at Sandia N
Laboratories. All of the mesh generation programs in the Engineering Sciences Cent
and write files in the GENESIS format, which allows great flexibility in the choice of m
generation, file translation, and graphical processing.

The GENESIS file contains the data to describe a finite element mesh including the
tion of the nodal points, the connectivity of the nodes that form each element, the m
types of each element, and the boundary condition data which are used to specify lo
plication points and nodal constraints. The two GENESIS entities that are primarily
in GJOIN are the Element Block ID and the Nodeset ID. These will be briefly descr
below; however, the reader is referred to Reference 10 for more information.

Element Block ID: In order to promote efficient storage and to enable efficient proces
within codes, elements are grouped into element blocks. Within an element block, a
ments must be of the same type and the same material. Each element block has an
unique number which identifies that particular block. This is called the Element Bloc

Nodeset ID: Nodesets provide a means to reference a group of nodes with a single ID
out requiring the user to know node numbers in the model. A particular node may be i
tiple nodesets, but may be in a single set only once. GJOIN uses nodesets to specif
nodes are to be combined in the two meshes.

1.3 Organization of Report

The remainder of this document is organized as follows:

• Chapter 2 describes the commands recognized byGJOIN and the algorithms it
uses to combine the mesh databases into a single mesh database, and

• Chapter 3 includes a short example problem which illustratesGJOIN use.

Four appendices are included in this document:

• Appendix A describes the specifics ofGJOIN including executing it, obtaining it,
compiling it, and quality assurance.

• Appendix B describes the originalGJOIN input syntax which is still recognized,
but is not recommended.

• Appendix C describes the GENESIS mesh database format.

• Appendix D presents theGJOIN output from the example problem
7

Intentionally Left Blank
8

d
coordi-
g this,
ocks,
ase can

is file,

s.

on-

-

ram-
enough
 of the
ional. If
plied.

e

-

2 Commands

GJOIN has three distinct input phases:

1. Filename prompting

2. Node combination and/or database modification prompting

3. General command processing

Initially, GJOIN prompts for the names of the twoGENESIS files which are to be com-
bined. Both files must have the same spatial dimension.GJOIN then enters the secon
phase in which the second database can be modified by scaling and or offsetting its
nates and the combination of nodes in the two databases is specified. Followin
GJOIN enters the general command section in which the numbering of material bl
sidesets, and nodesets can be modified. At this point, the resulting combined datab
be saved, or additional databases can be combined with the current database.GJOIN cre-
ates a log file containing the commands entered during an interactive session. Th
typically namedgjoin.log , can be used in subsequent invocations to runGJOIN in a
batch mode.

2.1 Command Syntax

The user directs the processing by entering commands to set processing parameter

The commands are in free-format and must adhere to the following syntax rules.

• Valid delimiters are a comma or one or more blanks.

• Either lowercase or uppercase letters are acceptable, but lowercase letters are c
verted to uppercase except for filenames, and database titles.

• A “$” character in any command line starts a comment. The “$” and any charac
ters following it on the line are ignored.

Each command has an action keyword or “verb” followed by a variable number of pa
eters. The command verb is a character string. It may be abbreviated, as long as
characters are given to distinguish it from other commands. The meaning and type
parameters is dependent on the command verb. Most command parameters are opt
an optional parameter field is blank, a command-dependent default value is sup
Below is a description of the valid entries for parameters.

• A numeric parameter may be a real number or an integer. A real number may b
in any legal FORTRAN numeric format (e.g., 1, 0.2, -1E-2). An integer parameter
may be in any legal integer format.

• A string parameter is a literal character string. Most string parameters may be ab
breviated.

The notation conventions used in the command descriptions are:

• The command verb is in all uppercasebold SANSERIF type.
9

-

-

to be
e

can be
irrored.

re

,

d

• A literal string is in all uppercaseSANSERIF type and should be entered as shown
(or abbreviated).

• The value of a parameter is represented by the parameter name initalics.

• A literal string or parameter in square brackets (“[]”) represents a parameter op
tion which is omitted entirely (including any following comma) if not appropriate.

• A series of literal strings separated by a vertical bar ("|") represents a list of valid
options. Only one of the options is allowed. Unless the strings are in square brack
ets, one of the strings must be entered.

• A command description terminating with ellipses ("…") signifies that the data fol-
lowing the command verb can be repeated on the same command line.

2.2 Filename specification phase

Initially, GJOIN will prompt for the filenames of the first two mesh databases that are
combined. If only one filename is specified,GJOIN will skip the node combination phas
and go directly to the general command processing phase.

2.3 Node combination and database modification phase

In the node combination and database modification phase, nodes in the two files
combined or the coordinates of the second database can be scaled, offset, and m
GJOIN will prompt with the string:

 "Combine or Convert (Enter HELP for info)> "

At this point, the valid responses are*:

• COMBINE [nset1, nset2] tolerance [CLOSEST][MATERIAL]
combine all nodes in nodesetsnset1 andnset2 that are withintolerance distance
of each other.

If CLOSEST is not specified,GJOIN combines thefirst node in the second
database that is withintolerance distance of a node in the first database. If
CLOSEST is specified, the closest node of all nodes in the second database that a
within tolerance distance of a node in the first database is combined.

If MATERIAL is specified, nodes are only combined if the material numbers in the
first and second databases match.

The keyword EQUIVALENCE can be used in place ofCOMBINE. Node
combinations are performed on the modified geometry, therefore, all scaling
offsetting, and mirroring commands must be specified prior to specifying any
combination command.

* An older syntax is also supported that requires several Y/N answers. See “Old Style Comman
Input Syntax” on page 23 for more information.
10

d

e

-
;

-

e

-

e

pro-
 and

de in
where
tion to
ly com-
• COMBINE EXIT|END|NO
exit the node combination phase, perform all of the specified offset, scale, an
mirror commands, and combine the nodes.

• OFFSET X|Y|Z|ALL|RESET offset, …
modify the coordinates of the second database by addingoffsetto its coordinates.
Multiple offsets can be specified on a single command line; however, offsets ar
not cumulative. For example, if "OFFSET X 5, Y 7.5, X 10" is entered, the X-coor-
dinate will be offset by 10 and the Y-coordinate by 7.5. The commandOFFSET
RESET nullifies previous offset commands. The keywordSHIFT is a synonym for
OFFSET.

• SCALE X|Y|Z|ALL|RESET scale,…
modify the coordinates of the second database by multiplying the specified coor
dinates by scale. Multiple scalings can be specified on a single command line
however, scalings are not cumulative. For example, if "SCALE X 2, y 3, x 4 " is en-
tered, the X-coordinate will be scaled by 4 and the Y-coordinate by 3. The com
mandSCALE RESET nullifies previous scale commands.

• REVOLVE X|Y|Z|ALL angle,…
modify the coordinates of the second database by revolvingangle degrees about
the specified axis. The center of rotation defaults to 0.0, 0.0, 0.0 unless set by th
REVCEN command. Two-dimensional meshes can only be rotated about theZ ax-
is. Multiple revolutions can be specified on a single command line and they are
cumulative.

• REVCEN xcen, ycen, zcen
set the center of rotation for theREVOLVE command toxcen, ycen, zcen.The cen-
ter of rotation defaults to 0.0, 0.0, 0.0 if it is not specified.

• MIRROR X|Y|Z|ALL,…
modify the coordinates of the second database by multiplying the specified coor
dinate by -1. Multiple mirrorings can be specified on a single command line; how-
ever they are not cumulative. TheMIRROR command simply sets the scale factor
to -1, so scaling and mirroring can not be used together. To mirror and scale at th
same time, simply set the scale factor to a negative value.

• LIST list the nodesets that are in the first and second mesh databases.

2.3.1 Details of the Node Combination Algorithm
The GJOIN node combination algorithm is an efficient, but not overly complicated,
cess. The algorithm will be described by first describing the most simplistic algorithm
then adding additional refinements until theGJOIN algorithm results.

The most simplistic algorithm would be to determine the distance between every no
mesh 1 and every node in mesh 2. This would generate comparisons,

 and are the number of nodes in mesh 1 and mesh 2, respectively. In addi
requiring excessive comparisons, this approach also has the disadvantage of possib
bining two or more nodes in one mesh with a single node in the other mesh.

num1 num2×
num1 num2
11

s been
simple
other
pping

nodes
 that
 a sig-

ing can
ate in

lf fast
entation

r each
f com-
istance
The first refinement is to keep a list of the nodes for each mesh. Once a match ha
determined, the nodes that participated in the match are removed from the list. This
refinement will, on the average, reduce the number of comparisons by one-half. An
gain in performance can be realized by preprocessing the two lists. First the overla
volume of the two lists is calculated, then the lists are reduced to include only the
that fall within the overlapping volume. This eliminates from the node lists all nodes
could not possibly match a node in the other list. For some geometries this results in
nificant reduction in the list; however, for many geometries there is little savings.

The next refinement is to order the lists based on the nodal X-coordinate. The search
then be terminated when the X-coordinate in the second list exceeds the X-coordin
the first list by more than the tolerance. This is algorithm is implemented inGJOIN. Addi-
tional refinements could be made; however, the current algorithm has proven itse
enough, even for meshes consisting of over 200,000 nodes. A pseudo-code repres
of this algorithm is shown below:

generate node lists -- either all of the nodes, or if a nodeset
match, all of the nodes in the nodesets.

determine overlapping volume of two node lists
remove nodes that do not fall within overlapping volume
sort lists on x-coordinate
---now we begin the node comparison function
jbeg = 1
for i = 1 to length(list1)
 node1 = list1(i)
 dmin = BIG_NUMBER
 for j = jbeg to length(list2)
 node2 = list2(j)
 if (x(node1) - eps > x(node2)) jbeg = j
 if (x(node1) + eps < x(node2)) --exit inner loop
 dist = distance(node1, node2)
 if (dist < tolerance) then
 if (closest match AND dist < dmin) then
 dmin = dist
 node_min = node2
 else (not closest match)
 ---Combine node1 and node2
 ---Remove node2 from list2
 ---Get a new node from list1 (goto next i)
 end if
 end if
 next j
 if (closest match AND dmin < tolerance) then
 ---Combine node1 and node_min
 ---Remove node_min from list2
 end if
 next i

If the by-material matching is being performed, the above process is repeated fo
matching material block in the two meshes. At the end of this process, the number o
bined nodes, the maximum distance between matched nodes, and the minimum d
12

ces are
d, you

-
d. The

f the

ch of
s

utput
abase.
between non-matched nodes are summarized. If the minimum and maximum distan
relatively close, or if the number of combined nodes is less (or more) than expecte
should loosen (or tighten) the tolerance.

2.4 General Command Processing Phase

After the node combination section has been completed,GJOIN enters the general com
mand processing mode in which several attributes of the mesh can be controlle
prompt in this mode is:GJOIN>. Valid commands are:

TITLE change the database title

BLOCKS manipulate the element material blocks

MATERIAL manipulate the element material blocks

NODESETS manipulate the nodal point sets

NSETS manipulate the nodal point sets

 SIDESETS manipulate the element side sets

 SSETS manipulate the element side sets

FINISH end command input, write output file

ADD end command input, add another mesh piece

EXIT, END end command input, start processing

QUIT abort processing, stop immediately

HELP print this list

NOTE: END andEXIT are old commands that have been superseded byADD andFINISH.
See “Old Style Command Input Syntax” on page 23 for more information. Each o
above commands is described in more detail in the following sections. WhenADD is en-
tered,GJOIN begins again in the file name prompting mode and continues through ea
the modes again. IfFINISH is entered,GJOIN prompts for the output file name and write
the combined mesh to the specified file.

2.4.1 TITLE
TITLE enters the title manipulation routine in which you can change the title of the o
database. By default, the title of the first input database is written to the output dat
Valid commands in this section are:

1 copy title from first database

2 copy title from second database (if any)

CHANGE change title to user-specified title

LIST list database titles

UP go up a command level (back to command mode)

EXIT go up a command level (back to command mode)
13

the

dify

 the
If CHANGE is entered,GJOIN will prompt for the title on a separate line.

2.4.2 Blocks and Material
BLOCKS or MATERIAL enters the block manipulation routine in which you can modify
material blocks of the output database. Valid commands are:

ID n newid change the block identification of blockn to id

DELETE id1, id2, …delete material blocks with identification
numbersid1, id2, ….

COMBINE id1 id2 … combine material blocksid1, id2, …, into a single
material block with identificationid1

RESET id reset material blockid

 LIST list information about the material blocks

UP/EXIT go up a command level

2.4.3 Nodesets
NODESETS or NSETS enters the nodeset manipulation routine in which you can mo
the nodesets of the output database. Valid commands are:

ID n newid change the nodeset identification of nodeset
numbern to newid

DELETE id1 id2 … delete nodesets with identification numbersid1,
id2, …

COMBINE id1 id2…combine nodesetsid1, id2, … into a single
nodeset with identification numberid1

RESET id reset nodesetid

LIST list information about the nodesets

UP/EXIT go up a command level

2.4.4 Sidesets
SIDESETS or SSETS enters the sideset manipulation routine in which you can modify
sidesets of the output database. Valid commands are:

ID n newid change the sideset identification of sideset
numbern to newid

DELETE id1 id2 … delete sidesets with identification numbersid1,
id2, …

COMBINE id1 id2…combine sidesetsid1, id2, … into a single sideset
with identification numberid1

RESET id reset sidesetid

LIST list information about the sidesets
14

mbined
in at

sing.
UP/EXIT go up a command level

2.4.5 Finish
FINISH ends general command processing and terminatesGJOIN. GJOIN will prompt for
the filename for the output database, write the file, and terminate.

2.4.6 Add
ADD ends general command processing and prepares to add another piece to the co
mesh.GJOIN will prompt for the filename for the next input database and begin aga
the node combination phase.

2.4.7 Exit and End
EXIT and END are old style commands which terminate general command proces
GJOIN will then ask if you want to add another piece or write the combined mesh.

2.4.8 Quit
QUIT abandons all processing and terminatesGJOIN. No files are written.

2.4.9 Help
HELP provides a system-dependent help message.
15

Intentionally Left Blank
16

own at
pose

sh of
 step is
 must

l cases,
ith no

tageous
r the
orary
ical
3 GJOIN Example Problem

The following example illustrates most of the commands inGJOIN. Although this
geometry could easily be generated withoutGJOIN, it is easier to illustrateGJOIN usage
with a two-dimensional mesh. In this example, we want to generate the geometry sh
the left side of Figure 2. The first step in performing the mesh generation is to decom

the geometry into primitives. In this case, the entire geometry can be built with a me
a square and a quadrant of a circle as shown in the right side of Figure 2. The next
to generate the primitive meshes which are schematically shown in Figure 3. Now, we

determine the order to join the pieces together. For this case, and for many practica
there are many options. In this case we can simply join all of the pieces separately w
intermediate meshes generated; however, in practical cases it is sometimes advan
to generate, for example, half of the mesh and then mirror it and join it to itself. Fo
sample problem, we could do this by first combining pieces 1 and 2, write a temp
mesh, and then reenterGJOIN and read in the temporary mesh, mirror it about the vert
axis and join it to itself.

Figure 2. Geometry Definition forGJOIN Example Problem

Figure 3. Schematics of Mesh Primitives forGJOIN Example Problem

square.garc.g
Origin 0,0

Origin 0,0

N
o

d
e

se
t 1

0

N
o

d
e

se
t 2

0
Material 1

Material 2

1 2

43

2 U
nits

2 Units

Slit

Origin 0,0
17

-

t

Next, we need to create theGJOIN input file. In our case, the input file will look like:

This is then run by typinggjoin < input_file. The output from this execution is repro
duced in Reference D, and the resulting mesh is shown in Figure 4.

square.g Initial Input File

arc.g Second Input File

mirror x Mirror it horizontally

combine 1.0e-4 Equivalence all nodes closer than 1.0e-4

combine end No more combination

add Add another piece

arc.g Filename of added piece

mirror x, y Mirror it horizontally and vertically

combine 1.0e-4 Equivalence all nodes closer than 1.0e-4

combine end No more combination

add Add another piece

square.g Filename of added piece

offset y -1.0 Offset vertically 1 unit

combine 20 10 1.0e-4 Equivalence nodes in nodeset 20 in main piece and
nodeset 10 in added piece.

combine end No more combination

nodeset Modify the nodesets

delete 10, 20 Delete both nodesets, used only for mesh generation, no
needed for analysis

up Finished with nodeset modification

material Modify the material blocks

combine 1 2 Combine all materials to material 1

up Finished with material modification

title Modify the title

change Want a completely new title

Example Problem for GJoin The new title

up Finished with title modification

finish Finished with mesh combination

example.g Name the resultant file
18

Figure 4. Mesh Resulting fromGJOIN Example Problem
19

Intentionally Left Blank
20

4 References
1G. D. Sjaardema, “Overview of the Sandia National Laboratories
Engineering Analysis Code Access System,” SAND92-2292, Sandia
National Laboratories, Albuquerque, NM, January 1993.

2A. P. Gilkey and G. D. Sjaardema, “GEN3D: A GENESIS Database 2D to
3D Transformation Program,” SAND89-0485, Sandia National
Laboratories, Albuquerque, New Mexico, March 1989.

3G. D. Sjaardema, “GENSHELL: A GENESIS Database 2D to 3D Shell
Transformation Program,” In preparation.

4G. D. Sjaardema, “GREPOS: A GENESIS Database Repositioning
Program,” SAND90-0566, Sandia National Laboratories, Albuquerque, NM,
April 1990.

5A. P. Gilkey and J. H. Glick, “BLOT-A Mesh and Curve Plot Program for the
Output of a Finite Element Analysis,” SAND88-1432, Sandia National
Laboratories, Albuquerque, New Mexico, August 1991.

6T. D. Blacker, “FASTQ Users Manual, Version 2.1,” SAND88-1326, Sandia
National Laboratories, Albuquerque, NM, July 1988.

7G. D. Sjaardema, “Aprepro: An Algebraic Preprocessor for Parameterizing
Finite Element Analyses,” SAND92-2291, Sandia National Laboratories,
Albuquerque, New Mexico, December1992.

8J. H. Red-Horse, W. C. Mills-Curran, D. P. Flanagan, “SUPES Version 2.1,
A Software Utilities Package for the Engineering Sciences,” SAND90-0247,
Sandia National Laboratories, Albuquerque, New Mexico, May 1990.

9G. D. Sjaardema, “NUMBERS: A Collection of Utilities for Pre- and
Postprocessing Two- and Three-Dimensional EXODUS Finite Element
Models,” SAND88-0737, Sandia National Laboratories, Albuquerque, New
Mexico, March 1989.

10W. C. Mills-Curran, A. P. Gilkey, and D. P. Flanagan, “EXODUS: A Finite
Element File Format for Pre- and Post-processing,” SAND87-2977, Sandia
National Laboratories, Albuquerque, New Mexico, September 1988.

11L. M. Taylor and D. P. Flanagan and W. C. Mills-Curran, “The GENESIS
Finite Element Mesh File Format,” SAND86-0910, Sandia National
Laboratories, Albuquerque, NM, May 1986.

12American National Standard Programming Language FORTRAN,
American National Standards Institute, Inc., ANSI X3.9-1978, New York,
1978.

13B. Berliner, “CVS II: Parallelizing Software Development,” Paper
presented at the Winter 1990 USENIX Conference, Washington, D.C., 1990.
21

Intentionally Left Blank
22

wing

e

A Old Style Command Input Syntax

The initial version ofGJOIN was primarily a request-driven program.GJOIN would ask a
question and the user would respond withYes or No. This syntax is still recognized to
maintain backward compatibility; however, its use is not recommended. The follo
questions would be asked:

First input file> Enter the file name of the first piece

Next input file> Enter the file name of the second piece

Combine or Convert (Enter HELP for info)>

EnterYes or No

The following two prompts only appear if each piece has nodesets.

Should a nodal point set match be done?

Enter YES if you want to match based on nodesets,
EnterNO if you want to match on geometry only.

Enter set ID of first set, second set>

Enter nodeset ids

 Enter new value for tolerance (<ret> for default):

Enter the tolerance

The above three lines will be repeated untilNO is entered
The GJOIN> prompt will now appear and you will be in general command mod
EnterEXIT to end command mode, GJOIN will then ask:

Is there another database?

EnterYES if you want to add another database to the generated database, theNext

input file> prompt (line 2 above) will then appear and the above process will
repeat.
EnterNO to end processing and write out the final database

Output file> Enter the output filename
23

Intentionally Left Blank
24

read

e seg-

y the

cense
nternal
written
nly for
ld be a
nts.
B GJOIN Details

Execution:

To executeGJOIN on aUNIX* system (with SEACAS), type:

 gjoin [<input_file]

where input_file is an optional input file containing commands. Commands are
from the standard input ifinput_file is not specified.

GJOIN reads and writes mesh database files written in the GENESIS format. A cod
ment illustrating the GENESIS database is given in Appendix C.

Source Code:

The GJOIN source code is maintained in the SEACAS system which is managed b
Concurrent Version System (cvs)13. GJOIN is written in ANSI standard FORTRAN-7712.
It must be linked with theSUPES8 andsuplib libraries which are also part of SEACAS.

Availability:

GJOIN and all other SEACAS codes are available on a licensed basis. The li
agreements for these codes stipulate that (1) the software is to be used solely for i
purposes, (2) the codes are not to be distributed or transferred to any person without
permission, (3) the codes are to be used at a single site and should be copied o
necessary maintenance, development, or backup purposes, and (4) there shou
procedure, or site plan, in place for protecting the provisions of the license agreeme

For more information on obtainingGJOIN or other SEACAS codes, contact:

Marilyn K. Smith
Division 1425
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-5800
(505) 844-3082, FAX: (505) 844-9297

*UNIX is a registered trademark of UNIX Systems Laboratories Inc.
25

Intentionally Left Blank
26

C The GENESIS Database Format

The following code segment reads a GENESIS database.
C --Open the GENESIS database file

NDB = 9
OPEN (UNIT=NDB, ..., STATUS='OLD', FORM='UNFORMATTED')

C --Read the title

READ (NDB) TITLE
C --TITLE - the title of the database (CHARACTER*80)

C --Read the database sizing parameters

READ (NDB) NUMNP, NDIM, NUMEL, NELBLK,
& NUMNPS, LNPSNL, NUMESS, LESSEL, LESSNL

C --NUMNP - the number of nodes
C --NDIM - the number of coordinates per node
C --NUMEL - the number of elements
C --NELBLK - the number of element blocks
C --NUMNPS - the number of node sets
C --LNPSNL - the length of the node sets node list
C --NUMESS - the number of side sets
C --LESSEL - the length of the side sets element list
C --LESSNL - the length of the side sets node list

C --Read the nodal coordinates

READ (NDB) ((CORD(INP,I), INP=1,NUMNP), I=1,NDIM)

C --Read the element order map (each element must be listed once)

READ (NDB) (MAPEL(IEL), IEL=1,NUMEL)

C --Read the element blocks

DO 100 IEB = 1, NELBLK

C --Read the sizing parameters for this element block

READ (NDB) IDELB, NUMELB, NUMLNK, NATRIB
C --IDELB - the element block identification (must be unique)
C --NUMELB - the number of elements in this block
C -- (the sum of NUMELB for all blocks must equal NUMEL)
C --NUMLNK - the number of nodes defining the connectivity
C -- for an element in this block
C --NATRIB - the number of element attributes for an element
C -- in this block

C --Read the connectivity for all elements in this block
27

READ (NDB) ((LINK(J,I), J=1,NUMLNK, I=1,NUMELB)

C --Read the attributes for all elements in this block

READ (NDB) ((ATRIB(J,I), J=1,NATRIB, I=1,NUMELB)

100 CONTINUE

C --Read the node sets

READ (NDB) (IDNPS(I), I=1,NUMNPS)
C --IDNPS - the ID of each node set

READ (NDB) (NNNPS(I), I=1,NUMNPS)
C --NNNPS - the number of nodes in each node set

READ (NDB) (IXNNPS(I), I=1,NUMNPS)
C --IXNNPS - the index of the first node in each node set
C -- (in LTNNPS and FACNPS)

READ (NDB) (LTNNPS(I), I=1,LNPSNL)
C --LTNNPS - the nodes in all the node sets

READ (NDB) (FACNPS(I), I=1,LNPSNL)
C --FACNPS - the factor for each node in LTNNPS

C --Read the side sets

READ (NDB) (IDESS(I), I=1,NUMESS)
C --IDESS - the ID of each side set

READ (NDB) (NEESS(I), I=1,NUMESS)
C --NEESS - the number of elements in each side set

READ (NDB) (NNESS(I), I=1,NUMESS)
C --NNESS - the number of nodes in each side set

READ (NDB) (IXEESS(I), I=1,NUMESS)
C --IXEESS - the index of the first element in each side set
C -- (in LTEESS)

READ (NDB) (IXNESS(I), I=1,NUMESS)
C --IXNESS - the index of the first node in each side set
C -- (in LTNESS and FACESS)

READ (NDB) (LTEESS(I), I=1,LESSEL)
C --LTEESS - the elements in all the side sets

READ (NDB) (LTNESS(I), I=1,LESSNL)
C --LTNESS - the nodes in all the side sets

READ (NDB) (FACESS(I), I=1,LESSNL)
C --FACESS - the factor for each node in LTNESS

C ...A valid GENESIS database may end at this point or after any point
C ...described below.

C --Read the QA header information

READ (NDB, END=...) NQAREC
C --NQAREC - the number of QA records (must be at least 1)

DO 110 IQA = 1, MAX(1,NQAREC)
28

READ (NDB) (QATITL(I,IQA), I=1,4)
C --QATITL - the QA title records; each record contains:
C -- 1) analysis code name (CHARACTER*8)
C -- 2) analysis code qa descriptor (CHARACTER*8)
C -- 3) analysis date (CHARACTER*8)
C -- 4) analysis time (CHARACTER*8)

110 CONTINUE

C --Read the optional header text

READ (NDB, END=...) NINFO
C --NINFO - the number of information records

DO 120 I = 1, NINFO
READ (NDB) INFO(I)

C --INFO - extra information records (optional) that contain
C -- any supportive documentation that the analysis code
C -- developer wishes (CHARACTER*80)

120 CONTINUE

C --Read the coordinate names

READ (NDB, END=...) (NAMECO(I), I=1,NDIM)
C --NAMECO - the coordinate names (CHARACTER*8)

C --Read the element type names

READ (NDB, END=...) (NAMELB(I), I=1,NELBLK)
C --NAMELB - the element type names (CHARACTER*8)
29

Intentionally Left Blank
30

D GJOIN Example Problem Output

*** GJoin Test Version 1.9 ***
Revised 92/11/11

A GENESIS DATABASE COMBINATION PROGRAM

Run on 11/11/92 at 15:48:19

Database: square.g

Square mesh for gjoin example

Number of coordinates per node = 2
Number of nodes = 121
Number of elements = 100
Number of element blocks = 1

Number of node sets = 1
Length of node list = 11

Number of side sets = 0

Database: arc.g

Arc mesh for gjoin example

Number of coordinates per node = 2
Number of nodes = 101
Number of elements = 82
Number of element blocks = 1

Number of node sets = 1
Length of node list = 11

Number of side sets = 0

*** Xnew = -1.000E+00 * Xold + 0.000E+00
*** Entering Sorting Phase
*** Entering Comparison Phase

Number of equivalence comparisons = 66
Tolerance used for matching = 1.000E-04
Maximum distance between matched nodes = 0.000E+00
Minimum distance between nonmatched nodes = 1.000E-01

11 nodes matched
Cpu Time = 0.000E+00, comparison/sec = Infinite
31

Database: %gjoin

Square mesh for gjoin example

Number of coordinates per node = 2
Number of nodes = 211
Number of elements = 182
Number of element blocks = 2

Number of node sets = 2
Length of node list = 22

Number of side sets = 0

Database: arc.g

Arc mesh for gjoin example

Number of coordinates per node = 2
Number of nodes = 101
Number of elements = 82
Number of element blocks = 1

Number of node sets = 1
Length of node list = 11

Number of side sets = 0

*** Xnew = -1.000E+00 * Xold + 0.000E+00
*** Ynew = -1.000E+00 * Yold + 0.000E+00
*** Entering Sorting Phase
*** Entering Comparison Phase

Number of equivalence comparisons = 66
Tolerance used for matching = 1.000E-04
Maximum distance between matched nodes = 0.000E+00

11 nodes matched
Cpu Time = 0.000E+00, comparison/sec = Infinite

*** WARNING - Duplicate IDs in element blocks - combined unless changed
*** WARNING - Duplicate IDs in nodal point sets -
combined unless changed

Database: %gjoin

Square mesh for gjoin example

Number of coordinates per node = 2
32

Number of nodes = 301
Number of elements = 264
Number of element blocks = 2

Number of node sets = 2
Length of node list = 32

Number of side sets = 0

Database: square.g

Square mesh for gjoin example

Number of coordinates per node = 2
Number of nodes = 121
Number of elements = 100
Number of element blocks = 1

Number of node sets = 1
Length of node list = 11

Number of side sets = 0

Nodal point sets:
Set 10 (#1): 11 nodes
Set 20 (#2): 21 nodes

* Set 10 (#3): 11 nodes
*** Ynew = 1.000E+00 * Yold + -1.000E+00
*** Entering Sorting Phase
*** Entering Comparison Phase

Number of equivalence comparisons = 176
Tolerance used for matching = 1.000E-04
Maximum distance between matched nodes = 2.086E-07
Minimum distance between nonmatched nodes = 1.000E-01

11 nodes matched
Cpu Time = 0.000E+00, comparison/sec = Infinite

*** WARNING - Duplicate IDs in element blocks - combined unless changed
*** WARNING - Duplicate IDs in nodal point sets -
combined unless changed

Nodal point sets:
Set 10 (#1): 11 nodes \ combined into ID 10

* Set 10 (#3): 11 nodes / combined into ID 10
Set 20 (#2): 21 nodes

Nodal point sets:
Set 10 (#1): 11 nodes <deleted>
33

Set 20 (#2): 21 nodes <deleted>
* Set 10 (#3): 11 nodes <deleted>

Element blocks:
Block 1 (#1): 100 elements 4-node \ combined into ID 1

* Block 1 (#3): 100 elements 4-node / combined into ID 1
Block 2 (#2): 164 elements 4-node

Element blocks:
Block 1 (#1): 100 elements 4-node \ combined into ID 1
Block 2 (#2): 164 elements 4-node | combined into ID 1

* Block 1 (#3): 100 elements 4-node / combined into ID 1

Database title:
Square mesh for gjoin example
Output database title:
Square mesh for gjoin example

Database title:
Square mesh for gjoin example
Output database title:
Example Problem for GJoin

Database: example.g

Example Problem for GJoin

Number of coordinates per node = 2
Number of nodes = 411
Number of elements = 364
Number of element blocks = 1

Number of node sets = 0
Number of side sets = 0

GJoin used .27 seconds of CPU time
34

35

36

Distribution

1 1400 E. J. Barsis
1 1401 J. R. Asay
1 1402 S. S. Dosanjh
1 1403 G. S. Davidson
1 1404 J. A. Ang

13 1425 J. H. Biffle & staff
50 1425 M. K. Smith
1 1431 J. M. McGlaun
1 1431 K. G. Budge
1 1431 J. S. Peery
1 1432 W. T. Brown
1 1433 J. W. Swegle

15 1434 D. R. Martinez & staff
1 1500 D. J. McCloskey
1 1501 C. W. Peterson
1 1502 P. J. Hommert
1 1503 L. W. Davison
1 1504 D. J. McCloskey, actg
1 1511 J. S. Rottler
1 1511 D. K. Gartling
1 1511 M. W. Glass
1 1511 P. L. Hopkins
1 1511 M. J. Martinez
1 1511 P. A. Sackinger
1 1511 P. R. Schunk
1 1511 J. D. Zepper
1 1512 A. C. Ratzel
1 1513 R. D. Skocypec
1 1513 R. G. Baca
1 1513 B. L. Bainbridge
1 1513 R. E. Hogan, Jr.
1 1513 J. L. Moya
1 1551 W. P. Wolfe
1 1552 C. E. Hailey
1 1553 W. L. Hermina
1 1554 W. H. Rutledge

15 1561 H. S. Morgan & staff
13 1562 R. K. Thomas & staff

10 1562 G. D. Sjaardema
1 1832 J. M. Ramage
1 2565 S. T. Montgomery
1 6313 J. Jung
1 6411 A. S. Benjamin
1 6423 J. F. Dempsey
1 6513 D. S. Oscar
1 6522 J. D. Miller
5 7141 Technical Library
1 7151 Technical Publications

10 7613-2 Document Processing
for DOE/OSTI

1 8523-2 Central Technical Files
6 8741 G. A. Benedetti & staff
1 8742 M. R. Birnbaum
1 8742 J. J. Dike
1 8742 L. I. Weingarten
5 8743 M. L. Callabresi & staff
37

	1 Introduction
	1.1 Sandia Engineering Analysis Code Access System...
	1.2 Introduction to the GENESIS File Format
	1.3 Organization of Report

	2 Commands
	2.1 Command Syntax
	2.2 Filename specification phase
	2.3 Node combination and database modification pha...
	2.3.1 Details of the Node Combination Algorithm

	2.4 General Command Processing Phase
	2.4.1 TITLE
	2.4.2 Blocks and Material
	2.4.3 Nodesets
	2.4.4 Sidesets
	2.4.5 Finish
	2.4.6 Add
	2.4.7 Exit and End
	2.4.8 Quit
	2.4.9 Help

	3 GJOIN Example Problem
	4 References

