
SANDIA REPORT
SAND2011-5715
Unlimited Release
Printed August 16, 2011

A Collection of Exodus Utilities:
Exodiff, EPU, EJoin, and Conjoin

Gregory D. Sjaardema

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2011-5715
Unlimited Release

Printed August 16, 2011

A Collection of Exodus Utilities:
Exodiff, EPU, EJoin, and Conjoin

Gregory D. Sjaardema
Simulation Modeling Sciences Department

Sandia National Laboratories
Albuquerque, NM 87185-0380

Abstract
The applications Exodiff, EPU, EJoin, and Conjoin are members of the Sandia Engineering Analysis
Code Access System (SEACAS [5]) which is used by analysts at Sandia National Laboratories. The
applications all read and/or write finite element databases stored in the Exodus [1] format.

Each application is targeted at a few specific areas of functionality:

Exodiff compares the results data from two Exodus files with user-specified relative or absolute
tolerances.

EPU combines multiple Exodus databases produced by a parallel application into a single Exodus
database.

EJoin joins two or more Exodus databases into a single Exodus database. The input databases
must have disjoint meta and bulk data.

Conjoin joins two or more Exodus databases into a single database. The input databases should
represent the same model geometry with results data written sequentially.

3

4

Contents

1 Introduction 7

1.1 Exodus Concepts . 8

1.1.1 Meta Data and Bulk Data . 8

1.1.2 Database Sections . 9

1.2 Licensing . 9

2 Exodiff 11

2.1 Introduction . 11

2.1.1 Difference Terminology . 11

2.2 Invoking Exodiff . 12

2.2.1 Optional Parameters . 13

2.2.2 Exodiff Command File Syntax . 16

2.3 Examples . 17

3 EPU 24

3.1 Introduction . 24

3.2 Invoking EPU . 24

3.2.0.1 File Naming Convention . 25

3.2.0.2 Defaults and Requirements . 25

3.2.1 Options . 25

3.2.1.1 Basic invocation options . 25

3.2.1.2 Disk-related filename options . 25

3.2.1.3 Additional Options . 27

3.3 Example . 29

3.4 Related Codes . 31

4 EJoin 32

5

4.1 Introduction . 32

4.2 Invoking EJoin . 32

4.2.1 Options . 32

4.3 Examples . 34

4.4 Related Codes . 35

5 Conjoin 36

5.1 Introduction . 36

5.2 Invoking Conjoin . 37

5.2.1 Options . 38

5.3 Example . 39

5.4 Related Codes . 40

Bibliography 42

6

Chapter 1

Introduction

The applications Exodiff, EPU, EJoin, and Conjoin are documented in this report. These applications
are members of the Sandia Engineering Analysis Code Access System (SEACAS [5]) which is used
by analysts at Sandia National Laboratories. The applications all read and/or write finite element
databases stored in the Exodus [1] format.

Each application is targeted at a few specific areas of functionality:

Exodiff compares the results data from two Exodus files with user-specified relative or absolute
tolerances. Output is either (1) a summary of the differences, or (2) a new Exodus database
where each variable is the difference of the variables in the input files. Typical uses are for
verifying the results written by an application code in regression testing or for comparing the
results of multiple analyses in a parameter study. Exodiff is described in Chapter 21.

EPU combines multiple Exodus databases produced by a parallel application into a single Exodus
database. EPU provides several options for controlling the output database contents. Typical
uses are for combining two or more processor-specific Exodus databases into a single Exodus
database. EPU is described in Chapter 3.

EJoin joins two or more Exodus databases into a single Exodus database. The input databases
must have disjoint meta and bulk data. That is,

• element blocks are not combined in the output model. Each element block in each input
file will produce an element block in the output file. Similarly for nodesets and sidesets.

• Each node in each input file will produce a node in the output file unless one of the node
matching options (-match node ids or -match node coordinates) is specified.

• Each element in each input file will produce an element in the output file.

If any of the input databases have timesteps, then the timestep values and counts must match
on all databases with timesteps. EJoin is described in Chapter 4.

Conjoin joins two or more Exodus databases into a single database. The input databases should
represent the same model meta data and similar bulk data with results data written sequen-
tially. The output database will contain the model geometry and all of the non-temporally-
overlapping results data. For example, if the first database contains time data from 0 to 5

1Richard Drake, Sandia National Laboratories, Albuquerque, NM, was responsible for the initial design and creation
of Exodiff

7

seconds, and the second database contains time data from 4 to 10 seconds; the output database
will contain time data from 0 to 10 seconds. Typical uses are to join databases written from
restarted analyses into a single database. Conjoin is described in Chapter 5.

Three of the applications above are used to join multiple Exodus databases into a single Exodus
database, so it can be confusing to decide which code should be used.

• If the multiple Exodus databases were created as the output from a parallel analysis code
with each compute processor writing its portion of the model, then EPU would be used to join
the databases.

• If the multiple Exodus databases each contain a distinct portion of the analysis model, then
EJoin would be used to join the databases.

• If the multiple Exodus databases each contain basically the same analysis model at different
times throughout the analysis event, then Conjoin would be used to join the databases.

1.1 Exodus Concepts

The Exodus database documentation can be accessed at http://jal.sandia.gov/SEACAS/Documentation/
exodusII-new.pdf or http://sourceforge.net/projects/exodusii/files/Documentation/Documentation/
exodusII-4.pdf. It contains a full detailed description of Exodus. This section presents an
overview of the concepts and structure of an Exodus database to give some details which will be
referred to in subsequent chapters. An Exodus database contains groupings of nodes and elements.
The groupings or entities include element blocks, nodesets, and sidesets.

1.1.1 Meta Data and Bulk Data

The data or information in an Exodus database can be grouped into two major types: meta data
and bulk data. The meta data is the data that gives an overview of the model and geometry that
the Exodus database contains. It is data like:

• element block, nodeset, sideset counts, ids, and names;

• the topology of the elements in an element block;

• the names of the transient variables and which entities the variables are defined on.

• shape and position of the entities, i.e., the model “topology”.

The bulk data is the “problem size” data such as the ids and coordinates for each node; the ids,
connectivity, and attributes for each element; the list of nodes in a nodeset and the list of elements
and element faces in a sideset; the values of the transient data on each node and element.

The meta data is a higher-level view of the model and the bulk data is one realization of that model.
Note that several different databases can have the same or similar meta data; but they could have
vastly different bulk data. As a trivial example, the meta data for a model could be:

• a single element block named “cube” with an id of 1.

• element block “cube” contains “hex8” elements.

8

http://jal.sandia.gov/SEACAS/Documentation/exodusII-new.pdf
http://jal.sandia.gov/SEACAS/Documentation/exodusII-new.pdf
http://sourceforge.net/projects/exodusii/files/Documentation/Documentation/exodusII-4.pdf
http://sourceforge.net/projects/exodusii/files/Documentation/Documentation/exodusII-4.pdf

• element block “cube” is centered on the origin and is 10 inches per side with faces aligned with
X, Y, and Z planes.

• a nodeset named “PosX” with id 1 on the positive X face.

One instance of bulk data for this meta data is an element block with 1,000,000 hexes with global
ids ranging from 2 to 2,000,000 by 2. Another instance of bulk data for the same meta data could
have the same element block with 8 hex elements with global ids 10,20,30,40,50,60,70,80.

Another example of multiple bulk data instances for a single meta data is decomposing an Exodus
database for a parallel run on 4 processors. Each decomposed database would have the same meta
data, but the bulk data would be different on each decomposed database.

1.1.2 Database Sections

An Exodus database is often thought of as containing multiple “sections”. These include the
“mesh” section which includes the bulk data describing the geometries; the element connectivities;
and collections of nodes and/or (element, element-local-face) pairs which can be used for boundary
conditions. Basically, all of the non-transient portions of the bulk data. Historically, this has been
called the “genesis” section of the Exodus database. The other section includes the “results” portion
of the bulk data which is the global, nodal, element, nodeset, and sideset variables; and the timestep
time values. The “results” portion is also called the “transient” section and is usually applied to
transient data with each time step associated with a unique output state of the analysis code. The
results portion is not required to be time-related data and can store information about any serialized
data. For example, the calculated modal frequencies and mode shapes of the model could be stored
in the “transient” section.

The Exodus database documentation includes much more detail, but the above terminology should
be helpful for some of the utility descriptions that follow in subsequent chapters.

1.2 Licensing

Each of the utilities described in this section is open-source licensed under the “New BSD License”
or “Modified BSD License”. The terms of the license are:

Copyright(C) 20XX2 Sandia Corporation. Under the terms of Contract DE-AC04-
94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this
software.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

2The year is different for each of EPU, Exodiff, EJoin, and Conjoin.

9

• Neither the name of Sandia Corporation nor the names of its contributors may be
used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON-
SEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The software is available at http://sourceforge.net/projects/seacas.

10

http://sourceforge.net/projects/seacas

Chapter 2

Exodiff

2.1 Introduction

Exodiff compares the results data from two Exodus databases. The databases should represent the
same model, that is, the Exodus meta data should be identical as should be the genesis portion
of the bulk data. The only differences should be in the values of the transient bulk data. Exodiff’s
main purpose is to detect and report these differences. Exodiff will compare global, nodal, element,
nodeset, and sideset transient variables at each selected timestep; it will also compare element
attribute variables on each element block containing attributes.

If a third file is specified on the command line, it will be created with the same meta data and
non-transient bulk data as the first file, and each variable in the third file will be the differences of
the corresponding variables in the first two files.

A command file can be specified and used to control exactly what variables are to be compared/differenced
and to what tolerance.

By default, element block names and variable names are compared ignoring case.

2.1.1 Difference Terminology

Exodiff supports several options for determining whether two values differ. These are called difference
types and include the following:

relative difference |val1− val2|/max(|val1|, |val2|).
absolute difference |val1− val2|
combined difference |val1− val2|/max(tol, tol ∗max(|val1|, |val2|))
eigen relative difference ||val1| − |val2||/max (|val1|, |val2|).
eigen absolute difference ||val1| − |val2||
eigen combined difference ||val1| − |val2||/max(tol, tol ∗max(|val1|, |val2|))

Where tol is a user-specified tolerance. The difference types prefixed by eigen are intended to be
used when the variable being differenced describes the shape of an eigenvector and the eigenvector
shape is considered equal if the values on one database are equal in magnitude, but possibly of a
different sign1.

1Note that the difference type as implemented does not fully check whether the eigenvectors represented by the
data are truly the same shape with a potential difference of sign since it works on an item-by-item basis and does

11

Values are considered equal if |val1| <= floor&&|val2| <= floor; where floor is a user-specified
value. Otherwise the difference is computed using one of the above formulas and compared to a
tolerance. If the difference is greater than the tolerance, then the databases are different. At the
end of execution, a summary of the differences found is output.

By default:

• All results variables and attributes are compared using a relative difference of 10−6 (about 6
significant digits) and a floor of 0.0.

• Nodal locations are compared using absolute difference with a tolerance of 10−6 and a floor
of 0.0.

• Time step values are compared using relative difference tolerance of 10−6 and a floor of 10−15.

2.2 Invoking Exodiff

Exodiff can be invoked using the following command lines: To do normal comparison of two files
using default tolerances producing text output summarizing the differences, enter:

exodiff [options] [-f <cmd file>] file1.e file2.e

Where cmd file is an optional file containing options and tolerance values; its syntax is described
below.

If you want Exodiff to output an Exodus file created containing the differences of the two files,
the command line is similar, but also contains the name of the file where the differences should be
written2:

exodiff [options] [-f <cmd file>] file1.e file2.e diff_file.e

The third invocation option reads a single file and outputs a summary of the variable data contained
in the file. The summary data are the minimum and maximum values for each variable and the time
step and entity id where the minimums and maximums occurred. This file can be used for preparing
a command input file for use in the previous two invocations. The no coord sep option if present
will inhibit the calculation and output of the minimum distance between any two nodes in the file
which can take a long time for large models and is often unneeded data.

exodiff -summary [no coord sep] file.e (create variable summary)

The remaining invocation lines will output a short usage summary, a much longer usage summary,
and the last just output the version information.

exodiff [-h] [-help] (short usage summary)

exodiff [-H] (longer usage summary)

exodiff [-v] [-version] (version info)

not check whether all items in the first database are multiplied by the same 1.0 or -1.0 to match the items in the
second database. However, the implementation can be improved in the future without breaking any existing scripts
or command files.

2Note that all variables on the third file are the difference of the values on the first two files including the dis-
placement variables. If you visualize the file containing the differences, the visualization program may show a strange
deformed shape since the displacement variables are no longer true displacements.

12

The basic behavior can be modified using several optional parameters specified on the command
line. These are documented below:

2.2.1 Optional Parameters

-t <real value> Overrides the default tolerance of 10−6 for all variables.

-F <real value> Overrides the default floor tolerance of 0.0 for all variables.

-absolute Use absolute differences as default tolerance type

-relative Use relative differences as default tolerance type

-combined Use combined differences as default tolerance type

-eigen absolute Use eigen absolute differences as default tolerance type (absolute
value of values)

-eigen relative Use eigen relative differences as default tolerance type (absolute
value of values)

-eigen combined Use eigen combined differences as default tolerance type (absolute
value of values)

-T <offset> Match timestep ’x+offset’ in first file with timestep ’x’ in second
file.

-TA Automatically determine the timestep offset such that both
databases end at the same step.

-TM Automatically determine the timestep offset to find the closest
match in file1 to the first step on file2.

-q Quiet. Only errors will be sent to stdout. Comparison mode will
echo: exodiff: Files are the same. or exodiff: Files

are different.

-show all diffs Show all differences for all variables, not just the maximum. De-
fault behavior is that there will be a maximum of one difference
output per variable per timestep. If this option is specified, then
any pair of values that exceed the tolerance will be output. Use of
this option Can result in lots of output on large files with lots of
differences.

-m Invoke a matching algorithm to create a mapping between the
nodes and elements of the two files based on geometric proxim-
ity. The topology must still be the same (within tolerance), but
can be ordered differently. A match must be found for all nodes
and elements or Exodiff will output an error message and stop.

-p Invoke a matching algorithm similar to the -m option. However
this option ignores unmatched nodes and elements. This allows
comparison of files that only partially overlap.

-match ids Invoke a matching algorithm which matches nodes and elements
using the node and element global id maps in the two files. This is
the default mode of operation.

13

-match file order Invoke a matching algorithm using the node and element position
order in the two files.

-show unmatched If the -p option is given, this prints out the elements that did not
match.

-dumpmap If the -m or -p switch is given, this prints out the resulting map
between the nodes and elements in the two files.

-nsmap Create a map between the nodeset nodes in the two files if they
include the same nodes, but are in different order. This is enabled
by default.

-ssmap Create a map between the sideset faces in the two files if they
include the same sides, but are in different order. This is enabled
by default.

-no nsmap Compare nodeset nodes based on file order only.

-no ssmap Compare sideset faces based on file order only.

-s Short block type compare. Forces element block type strings to
be compared only up to the shortest string length. For example,
“HEX” and “HEX8” will be considered the same. This is enabled
by default.

-no short Do not do the short block type compare. Forces element block type
strings to fully match. For example, “HEX” and “HEX8” will be
considered different.

-ignore case Ignore case. Variable names are compared case in-sensitive. For
example, “Stress” and “STRESS” will be considered as the same
variable. This is enabled by default.

-case sensitive Variable names are compared case sensitive. For example, “Stress”
and “STRESS” will be considered as two different variables.

-ignore maps Output node and element difference summaries using file local im-
plicit ids instead of global ids. Note that the matching of nodes
and elements will use the mapping option specified above; this op-
tion only affects the output of the node or element id where the
difference occurred.

-ignore nans Don’t check data for NaNs. By default, Exodiff will output a warn-
ing message if any variable’s value is NaN (Not a number).

-ignore dups If two elements/nodes are in the same location in match or partial
match case, return first match instead of aborting. This is used in
the -m and -p matching options. Normally, Exodiff will output an
error message if a node in one file can be matched to two or more
nodes in the second file.

-ignore attributes Don’t compare element attribute values.

14

-nosymm Turn off symmetric variable name checking. By default, a warning
will be produced if a variable that is not to be excluded3 is con-
tained in the second file given on the command line but not the
first. This “symmetric” check can be turned off with this option
and the extra variables in the second file will be ignored.

-allow name mismatch Allow a variable name that is in the first database to be absent
from the second database. The default behavior is to output an
error if all variables in the first file cannot be matched to variables
in the second file.

-x <list> Exclude time steps. Does not calculate any variable differences for
the time steps given in the list of integers. The format is comma
separated and ranged integers (with no spaces), such as “1,5-9,28”.
The first time step is the number one.

-steps <b:e:i> Specify subset of steps to consider. Syntax is begin:end:increment,
Enter -1:: for just the last step. If only begin is set, then end=begin
and only that step will be considered

-norms Calculate the L2 norm of variable differences and output if the
norm is greater than 0.0. The output will also contain the L2

norm of each variable. This can be used to give an idea of the
relative magnitudes of the differences compared to the magnitudes
of the variables. This is for informational purposes only at this
time; it does not affect the determination of whether the databases
compare the same or different.

-stat Return an exit status of 2 if the files are different. Normally, the
exit status is zero unless an error occurs.

-maxnames <int> There is a compiled limit of 1000 exodus variable names. This
option allows the maximum number to be set to a larger value if
either of the input databases contains more than 1000 variables.

-use old floor When Exodiff was first released, it used an incorrect definition of the
floor tolerance in which the differences were ignored if the difference
itself was less than the floor value. This was fixed several years ago
to the new definition which is to ignore the differences if |a| <
floor&&|b| < floor. This option was provided so that users could
use the old definition if desired. It should not be used.

-summary Produce a summary in Exodiff input format. This will create an
output file with max/min statistics on the data in the format
of an Exodiff input file. The algorithm to determine the mini-
mum separation between any two nodes can be disabled with the
“no coord sep” switch.

-copyright Output the copyright and license information.

-f <cmd file> Use the given file to specify the variables to be considered and
the tolerances to be used for each variable type or each individual
variable. See Section 2.2.2 for details of the syntax in this file.

3See the command file description in Section 2.2.2 for details on excluding variables

15

-H file Show the syntax help for the command input file. This is also
documented in Section 2.2.2.

2.2.2 Exodiff Command File Syntax

If an Exodiff invocation uses the -f <cmd file> option, then Exodiff will read commands from the
specified file in addition to parsing the options given on the command line. The command line will
be parsed first and then the commands in the input file. The primary use of the input file is to give
more control over the difference types and tolerances to be used for individual variables.

The basic syntax of the file is:

• each command is given on a separate line.

• Anything following the # character on a line will be treated as a comment and ignored.

• Within a “variables” block, lines must be indented and must begin with a “tab” character.

The valid command lines are shown in all uppercase in the following list. The list also describes the
behavior that the command line will specify.

• The variable names are case insensitive (unless the -case sensitive option is specified or
there is a CASE SENSITIVE line in the command file).

• All keyword comparisons are case insensitive. Abbreviations can be used.

• All variable comparisons use the default of relative 10−6 for variables and absolute 10−6 for
coordinates. This is overridden with the DEFAULT TOLERANCE line. The DEFAULT TOLERANCE

values are overridden by the values given on the VARIABLES line and apply only to those
variables. Each variable can override all values by following its name with a value.

• A variable name must start with a tab character. If there is at least one variable name of
a specified type (element, nodal, global, ...) is listed, then only the listed variable(s) of that
type will be differenced. The variable name can be followed by an optional difference type
and tolerance, and an optional floor and floor tolerance. The NOT symbol ! means do not
include this variable. Mixing non-! and ! is not allowed without the (all) specifier. For
example

NODAL VARIABLES (all) absolute 1.E-8

<tab> DISPLX

<tab> !VELX

<tab> VELY relative 1.E-6 floor 1.e-10

In this case, all variables are considered that are not prepended with a “!” symbol.

• If a variable type (e.g. NODAL VARIABLES) is not specified, no variables of that type will be con-
sidered. Allowed variable types are: GLOBAL VARIABLES, NODAL VARIABLES, ELEMENT VARIABLES,
NODESET VARIABLES, and SIDESET VARIABLES.

• The command line option to set the maximum number of Exodus names can be set with
MAX NAMES <int>. Note: this option must appear before the variable blocks are read!

• The time step exclusion option can be used in the input file with the syntax EXCLUDE TIMES <list>,
where <list> has the same format as in the command line options.

16

• The matching algorithm, -m, can be turned on from the input file with the APPLY MATCHING

keyword on a separate line.

• The nodeset matching algorithm, -nsmap, can be turned on from the input file with the
NODESET MATCH keyword on a separate line.

• The sideset matching algorithm, -ssmap, can be turned on from the input file with the
SIDESET MATCH keyword on a separate line.

• The short block type compare option, -s, can be turned on with the SHORT BLOCKS keyword.

• The no short compare option, -no short, can be turned on with the NO SHORT BLOCKS key-
word.

• The case sensitive option, -case sensitive, can be turned on with the CASE SENSITIVE key-
word.

• The ignore case option, -i, can be turned on with the IGNORE CASE keyword. (default behav-
ior)

• The ignore maps option, -ignore maps, can be turned on with the IGNORE MAPS keyword.

• The ignore nans option, -ignore nans, can be turned on with the IGNORE NANS keyword.

• The ignore dups option, -ignore dups, can be turned on with the IGNORE DUPLICATES key-
word.

• The time step offset option, -T, can be turned on with the STEP OFFSET keyword.

• The automatic time step offset option, -TA, can be turned on with the STEP OFFSET AUTOMATIC

keyword.

• The automatic time step offset option, -TM, can be turned on with the STEP OFFSET MATCH

keyword.

• The calculation of the L2 norm of differences -norms, can be turned on with the CALCULATE NORMS

keyword.

• The exit status return option, -stat, can be turned on with the RETURN STATUS keyword.

2.3 Examples

The output below shows an example run of Exodiff. The command invocation used was:

exodiff -f P_exodiff.cmd P_gold_results.e bar-P.e

The P exodiff.cmd command file contains the following:

COORDINATES absolute 1.e-6

TIME STEPS relative 1.e-6 floor 0.0

GLOBAL VARIABLES relative 1.e-6 floor 1.e-16

internal_energy

17

kinetic_energy

momentum_x

NODAL VARIABLES relative 1.e-4 floor 1.e-16

displacement_x

acceleration_x

force_internal_x

mass

velocity_x

ELEMENT VARIABLES relative 1.e-6 floor 1.e-16

eqps

stress_xx absolute 1000

stress_yy absolute 1000

stress_zz absolute 1000

temperature absolute 1

yield_stress absolute 1000

The first section of the output shows the code version and contact information and when the output
was generated; followed by some summary statistics of the two files including the file paths and the
counts of nodes, elements, etc. If options are read from a command file, the path to that file is
listed.

EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF

Version 2.43 (2011-04-07)

Authors: Richard Drake, rrdrake@sandia.gov

Greg Sjaardema, gdsjaar@sandia.gov

2011/04/28 21:11:00 MDT

EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF

Reading first file ...

Reading second file ...

FILE 1: /home/exodiff/axial_pulse_par_ns/P_gold_results.e

Title: Default Database Title

Dim = 3, Blocks = 1, Nodes = 816, Elements = 450, Nodesets = 6, Sidesets = 0

Vars: Global = 7, Nodal = 13, Element = 16, Nodeset = 0, Sideset = 0, Times = 23

FILE 2: /home/exodiff/axial_pulse_par_ns/bar-P.e

Title: Default Database Title

Dim = 3, Blocks = 1, Nodes = 816, Elements = 450, Nodesets = 6, Sidesets = 0

Vars: Global = 7, Nodal = 13, Element = 16, Nodeset = 0, Sideset = 0, Times = 23

COMMAND FILE: /home/exodiff/axial_pulse_par_ns/P_exodiff.cmd

The next output section summarizes what variables will be compared and the difference types,
tolerances, and floor values that will be used. Note that the command file is specifying that only a

18

subset of the variables on the files will be differenced since the output above shows 7 global variables,
13 nodal variables, and 16 element variables, but the list below only shows 3 global, 5 nodal, and 6
element variables.

Coordinates will be compared .. tol: 1e-06 (absolute), floor: 0

Time step values will be compared .. tol: 1e-06 (relative), floor: 0

Global variables to be compared:

internal_energy tol: 1e-06 (relative), floor: 1e-16

kinetic_energy 1e-06 (relative), 1e-16

momentum_x 1e-06 (relative), 1e-16

Nodal variables to be compared:

displacement_x tol: 1e-06 (relative), floor: 1e-16

acceleration_x 1e-06 (relative), 1e-16

force_internal_x 1e-06 (relative), 1e-16

mass 1e-06 (relative), 1e-16

velocity_x 1e-06 (relative), 1e-16

Element variables to be compared:

eqps tol: 1e-06 (relative), floor: 1e-16

stress_xx 1e-06 (relative), 1e-16

stress_yy 1e-06 (relative), 1e-16

stress_zz 1e-06 (relative), 1e-16

temperature 1e-06 (relative), 1e-16

yield_stress 1e-06 (relative), 1e-16

No Element Attribute variables on either file.

No Nodeset variables on either file.

No Sideset variables on either file.

==

NOTE: All node and element ids are reported as global ids.

The next output section shows the results of the differencing. For the first several timesteps, no
differences were found.

--------- Time step 1, 0.0000000e+00 ~ 0.0000000e+00, rel diff: 0.00000e+00 ---------

Global variables:

Nodal variables:

Element variables:

--------- Time step 2, 2.2708229e-08 ~ 2.2708229e-08, rel diff: 0.00000e+00 ---------

Global variables:

Nodal variables:

Element variables:

--------- Time step 3, 8.1607527e-08 ~ 8.1607527e-08, rel diff: 0.00000e+00 ---------

Global variables:

Nodal variables:

Element variables:

--------- Time step 4, 2.3437714e-07 ~ 2.3437714e-07, rel diff: 0.00000e+00 ---------

Global variables:

Nodal variables:

Element variables:

19

... deleted some output ...

--------- Time step 11, 7.7253933e-06 ~ 7.7253933e-06, rel diff: 0.00000e+00 ---------

Global variables:

Nodal variables:

Element variables:

--------- Time step 12, 8.9485520e-06 ~ 8.9485520e-06, rel diff: 0.00000e+00 ---------

Global variables:

Nodal variables:

Element variables:

At this time step, differences are detected and output. The output format is:

variable name diff type val file 1 val file 2 difference (which entity)

stress_xx rel diff: -1.1444528e+04 ~ -1.1444553e+04 = 2.15241e-06 (block 1, elmt 66)

Note that only the maximum difference found for each variable at each time step is output. There
may be many more differences detected.

--------- Time step 13, 1.0171704e-05 ~ 1.0171704e-05, rel diff: 1.66547e-16 ---------

Global variables:

Nodal variables:

acceleration_x rel diff: 1.1719403e+04 ~ 1.1719426e+04 = 1.98010e-06 (node 68)

force_internal_x rel diff: -5.8141261e+02 ~ -5.8141376e+02 = 1.98010e-06 (node 68)

Element variables:

stress_xx rel diff: -1.1444528e+04 ~ -1.1444553e+04 = 2.15241e-06 (block 1, elmt 66)

stress_yy rel diff: -4.9048081e+03 ~ -4.9048309e+03 = 4.63816e-06 (block 1, elmt 266)

stress_zz rel diff: -4.9048129e+03 ~ -4.9048357e+03 = 4.64075e-06 (block 1, elmt 266)

--------- Time step 14, 1.1394849e-05 ~ 1.1394849e-05, rel diff: 1.48669e-16 ---------

Global variables:

Nodal variables:

displacement_x rel diff: 1.0981488e-11 ~ 1.0980936e-11 = 5.02741e-05 (node 740)

acceleration_x rel diff: 2.0947516e+02 ~ 2.0950905e+02 = 1.61776e-04 (node 639)

force_internal_x rel diff: -5.1961477e+00 ~ -5.1969885e+00 = 1.61776e-04 (node 639)

velocity_x rel diff: 5.9451636e-05 ~ 5.9447122e-05 = 7.59215e-05 (node 740)

Element variables:

stress_xx rel diff: -1.9233572e+02 ~ -1.9236707e+02 = 1.62922e-04 (block 1, elmt 326)

stress_yy rel diff: -8.2409892e+01 ~ -8.2442564e+01 = 3.96299e-04 (block 1, elmt 326)

stress_zz rel diff: -8.2408238e+01 ~ -8.2440733e+01 = 3.94165e-04 (block 1, elmt 326)

--------- Time step 15, 1.2617989e-05 ~ 1.2617989e-05, rel diff: 1.34258e-16 ---------

Global variables:

Nodal variables:

displacement_x rel diff: 1.4026865e-13 ~ 1.4075811e-13 = 3.47725e-03 (node 648)

acceleration_x rel diff: 2.7998765e+00 ~ 2.8278524e+00 = 9.89300e-03 (node 700)

force_internal_x rel diff: -1.3890498e-01 ~ -1.4029290e-01 = 9.89300e-03 (node 700)

velocity_x rel diff: 7.8395852e-07 ~ 7.8796013e-07 = 5.07844e-03 (node 648)

Element variables:

stress_xx rel diff: -2.4472564e+00 ~ -2.4778807e+00 = 1.23591e-02 (block 1, elmt 386)

20

stress_yy rel diff: -1.0366468e+00 ~ -1.0631157e+00 = 2.48974e-02 (block 1, elmt 386)

stress_zz rel diff: -1.0455424e+00 ~ -1.0720140e+00 = 2.46934e-02 (block 1, elmt 386)

... deleted some output ...

--------- Time step 22, 2.1179859e-05 ~ 2.1179859e-05, rel diff: 7.99848e-16 ---------

Global variables:

Nodal variables:

Element variables:

--------- Time step 23, 2.2036041e-05 ~ 2.2036041e-05, rel diff: 7.68771e-16 ---------

Global variables:

Nodal variables:

Element variables:

The final section is the status output indicating that differences were detected. This string will not
change in future versions and can be searched for to determine whether the files are the same or
different. The Exodiff exit status can also be used for this if the -status option is set.

exodiff: Files are different

The next example shows the summary output produced by the command line:

exodiff -summary bar-P.e

EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF

#

Version 2.43 (2011-04-07)

Authors: Richard Drake, rrdrake@sandia.gov

Greg Sjaardema, gdsjaar@sandia.gov

2011/06/03 11:23:07 MDT

#

EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF EXODIFF

FILE 1: /scratch/user/bar-P.e

Title: An Exodiff Summary Example

Dim = 3, Blocks = 1, Nodes = 204, Elements = 50, Nodesets = 5, Sidesets = 0

Vars: Global = 7, Nodal = 10, Element = 16, Nodeset = 0, Sideset = 0, Times = 206

==

NOTE: All node and element ids are reported as global ids.

NOTES: - The min/max values are reporting the min/max in absolute value.

- Time values (t) are 1-offset time step numbers.

- Element block numbers are the block ids.

- Node(n) and element(e) numbers are 1-offset.

21

COORDINATES absolute 1.e-6 # min separation = 0.1

TIME STEPS relative 1.e-6 floor 0.0 # min: 0 @ t1 max: 2.2088109e-05 @ t206

GLOBAL VARIABLES relative 1.e-6 floor 0.0

external_energy # min: 0 @ t1 max: 0 @ t1

internal_energy # min: 0 @ t1 max: 22205882 @ t206

kinetic_energy # min: 0 @ t1 max: 20210551 @ t206

momentum_x # min: 0 @ t1 max: 42651.567 @ t206

momentum_y # min: 0 @ t1 max: 0 @ t1

momentum_z # min: 0 @ t1 max: 0 @ t1

timestep # min: 0 @ t1 max: 1.3153439e-07 @ t51

NODAL VARIABLES relative 1.e-6 floor 0.0

acceleration_x # min: 0 @ t1,n1 max: 3.7989521e+08 @ t190,n1

acceleration_y # min: 0 @ t1,n1 max: 0 @ t1,n1

acceleration_z # min: 0 @ t1,n1 max: 0 @ t1,n1

force_internal_x # min: 0 @ t1,n1 max: 82739542 @ t190,n5

force_internal_y # min: 0 @ t1,n1 max: 1.3526743e+08 @ t206,n201

force_internal_z # min: 0 @ t1,n1 max: 1.3526743e+08 @ t206,n201

mass # min: 0.111625 @ t1,n1 max: 0.22325 @ t1,n21

velocity_x # min: 0 @ t1,n1 max: 994.29394 @ t206,n201

velocity_y # min: 0 @ t1,n1 max: 0 @ t1,n1

velocity_z # min: 0 @ t1,n1 max: 0 @ t1,n1

ELEMENT VARIABLES relative 1.e-6 floor 0.0

eqps # min: 0 @ t1,b2,e1 max: 0.00083689614 @ t206,b2,e50

rate_of_deformation_xx # min: 0 @ t1,b2,e1 max: 539.94599 @ t116,b2,e50

rate_of_deformation_yy # min: 0 @ t1,b2,e1 max: 4.0126165e-32 @ t200,b2,e46

rate_of_deformation_zz # min: 0 @ t1,b2,e1 max: 1.1275579e-32 @ t185,b2,e49

rate_of_deformation_xy # min: 0 @ t1,b2,e1 max: 1.1868359e-13 @ t186,b2,e42

rate_of_deformation_yz # min: 0 @ t1,b2,e1 max: 1.1093839e-32 @ t185,b2,e49

rate_of_deformation_zx # min: 0 @ t1,b2,e1 max: 4.7474497e-14 @ t203,b2,e39

sound_speed # min: 394000 @ t1,b2,e1 max: 395751.09 @ t206,b2,e50

stress_xx # min: 0 @ t1,b2,e1 max: 3.980196e+09 @ t206,b2,e50

stress_yy # min: 0 @ t1,b2,e1 max: 2.7099141e+09 @ t206,b2,e50

stress_zz # min: 0 @ t1,b2,e1 max: 2.7099141e+09 @ t206,b2,e50

stress_xy # min: 0 @ t1,b2,e1 max: 2.7908475e-07 @ t205,b2,e46

stress_yz # min: 0 @ t1,b2,e1 max: 3.7940314e-26 @ t190,b2,e49

stress_zx # min: 0 @ t1,b2,e1 max: 1.5648498e-07 @ t188,b2,e49

temperature # min: 298 @ t78,b2,e8 max: 299.37791 @ t206,b2,e50

yield_stress # min: 7.5751705e+08 @ t142,b2,e34 max: 1.3389387e+09 @ t148,b2,e50

No NODESET VARIABLES

No SIDESET VARIABLES

The output starts with a database summary similar to the previous example. It then gives a summary
of the minimum and maximum values of each variable and the timestep and node or element where

22

that minimum or maximum occurs.

The format of the summary is such that it can be used as a basis for creating an Exodiff command
input file.

23

Chapter 3

EPU

3.1 Introduction

One of the typical processes for performing parallel analyses with Exodus databases is to decompose
the finite element model into multiple pieces such that each processor can read and write its own
portion of the finite element model and results data. For example, if a parallel analysis is to be
run on the mesh file mesh.g using 8 processors, then mesh.g will be decomposed into 8 pieces or
submeshes: mesh.g.8.0, mesh.g.8.1, . . ., mesh.g.8.7. Each submesh will contain a subset of the
nodes and elements of the entire mesh and some communication data indicating which nodes and
elements are on the boundary of this submesh and the submesh of one or more other processors.

The analysis code is then executed in parallel and each processor reads its portion of the mesh from
its respective submesh; when it outputs results and/or restart data, it creates a new file containing
its portion of the submesh and the results that are calculated on that submesh. An “N” processor
run will create “N” separate files for each results and/or restart “dataset” that it creates.

The analyst may want to visualize or postprocess the data in the submeshes as a single mesh, so
each submesh needs to be joined together to create a single “global” file containing all of the data.1

This joining together of parallel submeshes is the purpose of EPU. It will read the data from each
submesh and map it into the correct location in the “global” file; discarding duplicate data as
required.

The name EPU is an acronym for Exodus Parallel Unification Program. The “alternate” meaning
of EPU is E Pluribus Unum which means “Out of Many One” which is described in more detail at
http://www.greatseal.com/mottoes/unum.html.

3.2 Invoking EPU

EPU is typically invoked using a command line similar to:

epu [options] basename

epu [options] -auto full_filename

1Note that some visualizers can handle the separate, per-processor files, so joining is not required in all cases.

24

http://www.greatseal.com/mottoes/unum.html

Where basename is the “base” portion of the filename. For example, if one of the files to be joined
is results.e.8.3, then the basename would be specified as results.

3.2.0.1 File Naming Convention

The naming of the per-processor files must follow the convention that the last two dot-separated
suffixes of the filename represent the total processor count and the zero-based processor rank of the
processor that created the file, respectively. Also, the last suffix (rank) must be zero-filled such that
the width of the field is the same as the width required to represent the processor count. For example,
if the files were written for a 1000 processor run, the files would be basename.e.1000.0000 through
basename.e.1000.0999.

3.2.0.2 Defaults and Requirements

The default behavior is that EPU will join all per-processor files into the output file; all transient
variables (global, nodal, element, nodeset, and sideset) will be transferred for all timesteps. It is
assumed that all per-processor files represent a portion of the same overall finite element model and
that they all have the same Exodus meta data including variable names. In addition, each file must
have the same timesteps.

Several options are available to modify the default execution of EPU. These are documented below.

3.2.1 Options

3.2.1.1 Basic invocation options

The majority of the time, the filename-related options to EPU can be determined automatically by
passing the -auto option and instead of the basename, the full filename of one of the files is specified.
For example, given files of the form: /scratch/user/results.e.16.00, /scratch/user/results.e.16.01,
. . ., /scratch/user/results.e.16.15; EPU could be invoked as:

epu -auto /scratch/user/results.e.16.00

and the output file would be written to results.e in the current directory.

3.2.1.2 Disk-related filename options

If this simple invocation does not work for some reason, then the following options can be used for
full control over the reading and writing of the files. EPU will read and write files of the form:

Reads: root#o/sub/basename.suf.#p.0 to

root(#o+#p)%#r/sub/basename.isuf.#p.#p-1

Writes: current directory/basename.osuf

Where:

current directory By default, this is the directory from which EPU is being run. It can be set via
the -current directory <val> option.

25

basename The base portion of the filename before the suffices and after the root/sub portion (if
any).

isuf The suffix of the input files not including the processor-specific data. For example, given the
file results.e.8.0, the suffix would be e.

osuf The suffix that should be used for the output file.

#p The number of processors the files were decomposed for.

root The “non-raid” portion of the complete pathname (see below). If not on a raid system, this
can be omitted.

sub The portion of the pathname following the raid data (see below). If not on a raid system, this
can be omitted.

#o The “raid offset”

#r The “raid count” which is the number of raid disks.

The raid options are not used very often, but can be very useful if your compute system uses a
filesystem that requires it. On some compute systems, a parallel job needs to spread its data across
multiple filesystems in order to load balance the IO requests. The filesystem mount points will
typically look something like: /scratch0, /scratch1, /scratch2, /scratch3. Within these filesystems,
the directory hierarchy will typically match. So, for example, assume that a 16 processor job is run
on a filesystem like this and the files to be joined are named:

/scratch0/user/results.e.16.00 /scratch1/user/results.e.16.01
/scratch2/user/results.e.16.02 /scratch3/user/results.e.16.03
/scratch0/user/results.e.16.04 /scratch1/user/results.e.16.05
/scratch2/user/results.e.16.06 /scratch3/user/results.e.16.07
/scratch0/user/results.e.16.08 /scratch1/user/results.e.16.09
/scratch2/user/results.e.16.10 /scratch3/user/results.e.16.11
/scratch0/user/results.e.16.12 /scratch1/user/results.e.16.13
/scratch2/user/results.e.16.14 /scratch3/user/results.e.16.15

If the user is in some other directory and wants the output file written to /scratch0/user/results.epu,
the command to do this would be:

epu -extension e -output extension epu -raid_count 4

-processor_count 16 -Root directory /scratch

-Subdirectory user -current directory

/scratch0/user results

If for some reason, the processor 0 file had been written to the /scratch2 filesystem and then
subsequent files followed the cycle, then the additional option -offset 2 specifying the “raid offset”
would be added.

The options that control this are:

-auto Automatically set Root, Proc, Ext from the name of one of the
files being joined. The filename is used in place of “basename”.

-extension <val> Exodus database extension for the input files

-output extension <val> Exodus database extension for the output file

26

-offset <val> Raid Offset

-raid count <val> Number of raids

-processor count <val> Number of processors

-current directory <val> Current directory

-Root directory <val> Root directory

-Subdirectory <val> Subdirectory containing input exodusII files

Note that the majority of the time, this complicated option setting is not required and everything
can be set automatically via the -auto option.

3.2.1.3 Additional Options

-help Print the version and a summary of all options and exit.

-version Print version and exit.

-map Map element ids to original order if possible [default].

-nomap Do not map element ids to original order.

-debug <val> Debug level (values are added together).

1 = Timing information.

2 = Check consistent nodal field values between processors.

4 = Verbose Element block information.

8 = Check consistent nodal coordinates between processors.

16 = Verbose Sideset information.

32 = Verbose Nodeset information.

64 = Put exodus library into verbose mode.

128 = Check consistent global field values between processors.

-width <val> Width of output screen, default = 80.

-add processor id Add ’processor id’ element variable to the output file. The value
of the variable is the processor on which that element existed.

-append Append to an existing database instead of overwriting an existing
database. Timestep transfer will start after last timestep on the
existing database.

-steps <val> Specify a subset of timesteps to transfer to output file.
Format is begin:end:step. For example, -steps 1:10:2 would result
in steps 1,3,5,7,9 being transferred to the output databaes. Enter
LAST to just transfer last step, for example, “-steps LAST”

27

-Part count <val> How many pieces (files) of the model should be joined. This option
is typically used with either the -start part or the -subcycle

options in the case where the user wants to only join a subset of
the individual per-processor files.

-start part <val> Start with processor n file (0-based). Used with the -Part count

option

-subcycle [val] Subcycle. Create ’val’ subparts if ’val’ is specified. Otherwise,
create multiple parts each of size ’Part count’. The subparts can
then be joined by a subsequent run of EPU. This option is usually
used for one of two cases:

1. The maximum number of simultaneously open files on the
filesystem or system is less than the processor count2. In
that case, unless this option is used, EPU will have to open
and close each file for each time it is accessed which can take
a long time.

2. The user wants to use a parallel visualization program that
can handle a model split into multiple parts, but wants fewer
parts than were used in the parallel analysis run.

If the parameters result in the creation of “n” parts, then
the output files written will be basename.osuf.n.0 through
basename.osuf.n.n-1.

-gvar <val> Comma-separated list of global variables to be joined or ALL or
NONE. The default behavior is that all global variables will be
written to the output file.

-evar <val> Comma-separated list of element variables to be joined or ALL or
NONE. Variables can be limited to certain blocks by appending a
colon followed by the block id. For example, -evar sigxx:10:20

would result in the variable sigxx would be written for element
blocks with id 10 and 20. The default behavior is that all element
variables will be written to the output file.

-nvar <val> Comma-separated list of nodal variables to be joined or ALL or
NONE. The default behavior is that all nodal variables will be
written to the output file.

-nsetvar <val> Comma-separated list of nodeset variables to be joined or ALL or
NONE. The default behavior is that all nodeset variables will be
written to the output file.

-ssetvar <val> Comma-separated list of sideset variables to be joined or ALL or
NONE. The default behavior is that all sideset variables will be
written to the output file.

-omit nodesets Don’t transfer nodesets to output file.

-omit sidesets Don’t transfer sidesets to output file.

-copyright Show copyright and license data.

2EPU will output a message to standard output if this happens.

28

When EPU is invoked, it will parse the user-specified options from the command line and it will also
see if the environment variable EPU OPTIONS exists. If the variable exists, then it will be parsed first
followed by the parsing of the options on the command line.

3.3 Example

The output below shows the results of running the following command:

epu -auto epu_example.rsout.8.0

The first section of the output shows the code version followed by some information showing how
the -auto option decoded the filename and automatically set some of the filename-related options.
It then shows which files will be used in the joining process.

epu -- E Pluribus Unum

(Out of Many One -- see http://www.greatseal.com/mottoes/unum.html)

ExodusII Parallel Unification Program

(Version: 3.30) Modified: 2011/01/12

The following options were determined automatically:

basename = ’epu_example’

-processor_count 8

-extension rsout

-Root_directory

Input(0): ’./epu_example.rsout.8.0’

...

Input(7): ’./epu_example.rsout.8.7’

The next section shows the progress of reading the meta data information from each file and creating
the output file and populating the mesh portion of the bulk data.

**** READ LOCAL (GLOBAL) INFO ****

Node map is contiguous.

Finished reading/writing Global Info

**** GET BLOCK INFORMATION (INCL. ELEMENT ATTRIBUTES) ****

Global block count = 3

Getting element block info.

Element id map is contiguous.

**** GET SIDE SETS *****

**** GET NODE SETS *****

29

**** BEGIN WRITING OUTPUT FILE *****

Output: ’./epu_example.rsout’

Writing global node number map...

Writing out master global elements information...

Reading and Writing element connectivity & attributes

**** GET COORDINATE INFO ****

Wrote coordinate names...

Wrote coordinate information...

At this point, the non-transient portion of the output file is complete and all that remains is defining
the results data and transferring it to the output file. The timing information in the timestep transfer
gives an estimate of how long the transfer is expected to take; its accuracy can vary depending on
the machine load and the file system load.

At the end, a summary of the output mesh is given.

**** GET VARIABLE INFORMATION AND NAMES ****

Found 11 global variables.

cumulative_topology_modification current_eigenvalue

delta_t hourglass_energy

last_rebalance_comm_load last_rebalance_step

stepcount strain_external_energy

timestep_lanczos_last timestep_nodal

updated_step_count

Found 14 nodal variables.

displacement_x displacement_y

displacement_z 3by3_block_diag_pc_xx

acceleration_x acceleration_y

acceleration_z force_constraint_x

force_constraint_y force_constraint_z

temperature velocity_x

velocity_y velocity_z

Found 11 element variables.

dilmod element_mass

stress_xx stress_yy

stress_zz stress_xy

stress_yz stress_zx

temperature timestep

volume

**** GET TRANSIENT NODAL, GLOBAL, AND ELEMENT DATA VALUES ****

30

Number of time steps on input databases = 93

Transferring step 1 to step 93 by 1

Wrote step 1, time 1.0000e-05 [1.1%, Elapsed=1.1s, ETA=1.7m]

Wrote step 2, time 1.0000e-02 [2.2%, Elapsed=2.2s, ETA=1.7m]

Wrote step 3, time 2.0000e-02 [3.2%, Elapsed=3.3s, ETA=1.7m]

... deleted ...

Wrote step 90, time 8.9000e-01 [96.8%, Elapsed=3.5m, ETA=7.1s]

Wrote step 91, time 9.0000e-01 [97.8%, Elapsed=3.6m, ETA=4.7s]

Wrote step 92, time 9.1000e-01 [98.9%, Elapsed=3.6m, ETA=2.4s]

Wrote step 93, time 9.2000e-01 [100.0%, Elapsed=3.7m, ETA=0.0s]

******* END *******

IO Word size is 8 bytes.

Title: EPU Example File

Number of coordinates per node = 3

Number of nodes = 35946

Number of elements = 28913

Number of element blocks = 3

Number of nodal point sets = 3

Number of element side sets = 3

3.4 Related Codes

EPU replaces the functionality of the nem join [4] code. EPU provides a superset of the nem join

functionality and is also much faster in almost all cases. EPU also supports nodeset and sideset
variables and the naming of element blocks, nodesets, and sidesets which are not supported by
nem join.

31

Chapter 4

EJoin

4.1 Introduction

EJoin is used to join two or more Exodus databases into a single Exodus database. The input
databases must have disjoint meta and bulk data. That is,

• element blocks are not combined in the output model. Each element block in each input file
will produce an element block in the output file. Similarly for nodesets and sidesets.

• Each node in each input file will produce a node in the output file unless one of the node
matching options (-match node ids or -match node coordinates) is specified.

• Each element in each input file will produce an element in the output file. Elements are never
combined even if all of the nodes on two elements are combined, the output file would have
two elements with identical connectivity which is usually not desired.

If any of the input databases have timesteps, then the timestep values and counts must match on
all databases with timesteps.

4.2 Invoking EJoin

The minimal command line for executing EJoin is:

ejoin {list of files to join}

This would create an output mesh named ejoin-out.e containing the entities and data from the
files listed on the command line.

Several options are available to modify the default behavior of EJoin. In the description of the
options, there is the concept of a “part” which is simply the mesh from an input file. The parts are
numbered sequentially starting at 1.

4.2.1 Options

32

-help Print this summary and exit

-version Print version and exit

-output <val> Name of the output file to create. The default output filename is
ejoin-out.e. If the specified file already exists, it will be overwrit-
ten.

-omit blocks <val> Omit the specified part/block pairs. The specification is
p#:block id1:block id2,p#:block id1. For example, to omit
block ids 1,3,4 from part 1; block ids 2,3,4 from part 2; and block
8 from part5, specify -omit blocks p1:1:3:4,p2:2:3:4,p5:8.

-omit nodesets [val] If no value, then don’t transfer any nodesets to the output file.
If just p#,p#,... specified, then omit nodesets on the specified
parts. If p#:id1:id2,p#:id2,id4... then omit the nodesets with
the specified id in the specified parts.

-omit sidesets [val] If no value, then don’t transfer any sidesets to the output file. If
just p#,p#,... specified, then omit sidesets on specified parts If
p#:id1:id2,p#:id2,id4... then omit the sidesets with the spec-
ified id in the specified parts.

-convert nodal to nodesets <val> For each part listed (or ALL), create a nodeset containing the nodes
of that part and output the nodal fields from that part as nodeset
fields instead of nodal fields. Format is comma-separated list of
parts (1-based), or ALL

-match node ids Combine nodes if their global ids match. This option can not be
specified if -match node coordinates is specified.

-match node coordinates Combine nodes if they are within tolerance distance of each other.
The -tolerance <val> option is used to set the matching tol-
erance. This option can not be specified if -match node ids is
specified.

-tolerance <val> Maximum distance between two nodes to be considered colocated.
The default tolerance is calculated as 0.001 times the sum of the
X, Y, and Z extents of the bounding box containing the overlap-
ping regions of the bounding boxes of the two meshes being com-
pared. This option is only meaningful if -match node coordinates

is specified.

-offset <val> Comma-separated x,y,z offset for the nodal coordinates of all parts
except for part 11.

-steps <val> Specify subset of timesteps to transfer to output file. Format is
beg:end:step. For example, the input -steps 1:10:2 would re-
sult in steps 1, 3, 5, 7, and 9 being transferred to the output file.
To only transfer last step, use -steps LAST

-gvar <val> Comma-separated list of global variables to be joined or ALL or
NONE. The default behavior is that all global variables will be writ-
ten to the output file.

1This option is planned to be changed in the future to allow specifying a different offset for each part including
part 1. It is unknown at this time when this will be implemented or what the syntax will be.

33

-evar <val> Comma-separated list of element variables to be joined or ALL or
NONE. Variables can be limited to certain blocks by appending a
colon followed by the block id. For example, -evar sigxx:10:20

would result in the variable sigxx would be written for element
blocks with id 10 and 20. The default behavior is that all element
variables will be written to the output file.

-nvar <val> Comma-separated list of nodal variables to be joined or ALL or
NONE. The default behavior is that all nodal variables will be writ-
ten to the output file.

-nsetvar <val> Comma-separated list of nodeset variables to be joined or ALL or
NONE. Variables can be limited to certain sets by appending a colon
followed by the nodeset id. E.g. -nsetvar temperature:10:20. The
default behavior is that all nodeset variables will be written to the
output file.

-ssetvar <val> Comma-separated list of sideset variables to be joined or ALL or
NONE. Variables can be limited to certain sets by appending a
colon followed by the nodeset id. E.g. -ssetvar sigxx:10:20. The
default behavior is that all sideset variables will be written to the
output file.

-disable field recognition Do not try to combine scalar fields into higher-order fields such as
vectors or tensors based on the field suffix.

-copyright Show copyright and license data.

When EJoin is invoked, it will parse the user-specified options from the command line and it will also
see if the environment variable EJOIN OPTIONS exists. If the variable exists, then it will be parsed
first followed by the parsing of the options on the command line.

4.3 Examples

The output below shows the results of a sample run of ejoin. In this example, there are three springs
(drive, gate, and shutter) which have been prestressed in three separate analyses. The results data
for these analyses are in the *.rs files. The analyst wants to join these prestress outputs back
into the original mesh and then perform another analysis using the prestressed springs. The spring
element blocks have ids 1, 2, and 3. Each of the individual spring prestress runs have 3 element
blocks – a spring and two spring attachment points. To create the final model, the following steps
need to be done:

• Remove the spring element blocks from the original mesh database (assembly.g)

• Remove the spring attachment points from each prestressed spring model.

– Blocks 14 and 21 in the drive spring (part 2),

– Blocks 17 and 31 in the gate spring (part 3), and

– Blocks 72 and 61 in the shutter spring (part 4).

• Join the remaining blocks into a single model including the results data from only the last
timestep of the spring models.

34

These steps are accomplished using the following syntax:

ejoin -omit_blocks p1:1:2:3,p2:14:21,p3:17:31,p4:72:61 -steps LAST

-output assembly_final.g assembly.g drive.rs gate.rs shutter.rs

The output from executing this command is:

EJoin

(A code for merging Exodus II databases; with or without results data.)

(Version: 1.2.7) Modified: 2011/02/09

*** 50503 Nodes were merged/omitted.

Wrote step 1/1, time 3.6000e-02

Database: assembly_final.g

Number of coordinates per node = 3

Number of nodes = 274723

Number of elements = 220160

Number of element blocks = 25

Number of nodal point sets = 27

Number of element side sets = 4

Number of global variables = 128

Number of variables at each node = 42

Number of variables at each element = 34

Number of variables at each nodeset = 0

Number of variables at each sideset = 0

Number of time steps on the database = 1

******* END *******

4.4 Related Codes

EJoin provides some, but not all, of the functionality of the gjoin [2] code. The main differences
are:

• gjoin does not handle transient results data on the input databases.

• gjoin can combine element blocks from multiple input databases into a single element block.
Similarly for nodesets and sidesets.

• gjoin can independently rotate, scale, and offset each input database; EJoin can currently
only offset the second and subsequent parts by the same value; however, it is planned to add
additional part transformation (offset, scale, rotation) options to EJoin in the future.

• gjoin tends to use memory inefficiently which can limit the size of database that it can
generate; EJoin should use memory more efficiently and allow the generation of much larger
models.

35

Chapter 5

Conjoin

5.1 Introduction

A finite element analysis can often generate multiple results and/or restart databases due to model
bulk data changes or restarting the analysis.

The bulk data changes are caused by element death, element creation, and surface evolution. Because
the Exodus database requires a constant model meta data and bulk data description, the analysis
code must close the current results and restart databases and create new databases if the model
meta data or bulk data change. At the end of the analysis, there will be multiple database files all
describing a similar model with similar meta data, but with each database containing a different set
of bulk data descriptions of that meta data.

Another cause of multiple Exodus databases is when the analysis job is restarted one or more
times. This is typically the case for long-running analyses whose total execution time exceeds the
maximum allowed queue time on a compute cluster. A restart database is written at the end of each
compute segment and then the job is resubmitted to the compute cluster and is restarted one or
more times. At the end of the analysis, there will be at least one database for each compute segment
and it is often desirable to combine these databases into a single database for visualization and post
processing.

Conjoin joins two or more Exodus databases into a single database. The input databases should
represent the same model geometry with similar variables. The output database will contain the
model geometry and all of the non-temporally-overlapping results data. If two databases have
overlapping timestep ranges, the timesteps from the later database will be used. For example, if
the first database contains time data from 0 to 5 seconds, and the second database contains time
data from 4 to 10 seconds; the output database will contain time data from 0 to 4 seconds from
the first database and time data from 4 to 10 seconds from the second database. If two nodes have
the same global id and are also colocated, then they are combined to a single node in the output.
Similarly, elements with the same global id and the same nodal connectivity are combined into a
single element in the output file.

The output database will contain the union of the meta and bulk data entities (i.e., nodes, elements,
element blocks, sidesets, and nodesets) from each input database. The existence of an entity at a
particular timestep is indicated via a status variable. For example, if the first database is the mesh
shown in Figure 5.1a at time 0.0 seconds, and the second database is the mesh shown in Figure 5.1b
at time 1.0 seconds, then the combined mesh would be the union of the nodes and elements in the

36

two meshes as shown in Figure 5.1c.

(a) First Database, time 0 (b) Second Database, time 1 (c) Combined Database, time 0, 1

Figure 5.1: Example Input and Output Meshes for Conjoin

The values of the element status variable for each element at each timestep are shown below. A
status value of 0 indicates that the element is active and a value of 1 indicates it is inactive. The
nodes have a similar status variable.

element 1 2 3 4 5 6 7

status at time 0 0 0 0 0 1 1 1

status at time 1 1 1 1 0 0 0 0

The output database will contain the variables that are defined on the first mesh. If later databases
do not have those variables, then the data will be zero-filled for those timesteps. If later databases
have additional variables, they will be ignored.

5.2 Invoking Conjoin

The minimal command line for executing Conjoin is:

conjoin {list of files to join}

This would create an output mesh named conjoin-out.e containing the entities and data from the
files listed on the command line. The files must be listed in order of increasing time step values. A
nodal variable named node status and an element variable named elem status will be added to
the variables already existing on the first file. The value of the status variables will be 0 to indicate
an active node or element and 1 to indicate an inactive node or element.

Several options are available to modify the default behavior of Conjoin.

37

5.2.1 Options

-help Print this summary and exit

-output <val> Name of the output file to create. The default output filename
is conjoin-out.e. If the specified file already exists, it will be
overwritten.

-alive value <val> Value (1 or 0) which will be used to indicate that an element is
alive or active. The default behavior is that 0 indicates alive or
active nodes and elements.

-combine status variables <val> The conjoin elem status variable will be combined with the speci-
fied status variable (val) existing on the mesh. Both variables must
have the same value (1 or 0) to indicate that the element is alive
or active. If 1 is alive, then the combined variable is the minimum
of the two values. If 0 is alive, then the combined variable is the
maximum of the two values. Use the alive value option to set
conjoin’s alive value

-element status variable <val> Element variable name to use as element existence status variable;
it must not exist on input files. If specified as NONE, then it will
not be written to the output file. Default = elem status

-nodal status variable <val> Nodal variable name to use as nodal status variable; it must not
exist on input files. If specified as NONE, then it will not be written
to the output file. Default = node status

-omit nodesets Don’t transfer nodesets to output file.

-omit sidesets Don’t transfer sidesets to output file.

-gvar <val> Comma-separated list of global variables to be joined or ALL or
NONE. The default behavior is that all global variables will be
written to the output file.

-evar <val> Comma-separated list of element variables to be joined or ALL or
NONE. Variables can be limited to certain blocks by appending a
colon followed by the block id. For example, -evar sigxx:10:20

would result in the variable sigxx would be written for element
blocks with id 10 and 20. The default behavior is that all element
variables will be written to the output file.

-nvar <val> Comma-separated list of nodal variables to be joined or ALL or
NONE. The default behavior is that all nodal variables will be
written to the output file.

-nsetvar <val> Comma-separated list of nodeset variables to be joined or ALL or
NONE. The default behavior is that all nodeset variables will be
written to the output file.

-ssetvar <val> Comma-separated list of sideset variables to be joined or ALL or
NONE. The default behavior is that all sideset variables will be
written to the output file.

38

-debug <val> Debug level (values are or’d)

1 = timing information.

4 = Verbose Element block information.

8 = Check consistent nodal coordinates between parts.

16 = Verbose Sideset information.

32 = Verbose Nodeset information.

64 = put exodus library into verbose mode.

128 = Check consistent global field values between parts.

-width <val> Width of output screen, default = 80

-version Print version and exit

-copyright Show copyright and license data.

When Conjoin is invoked, it will parse the user-specified options from the command line and it will
also see if the environment variable CONJOIN OPTIONS exists. If the variable exists, then it will be
parsed first followed by the parsing of the options on the command line.

5.3 Example

The output below shows the results of running the following command:

conjoin -output adapt.e adaptBox.e*

The first section of the output shows the code version followed by some information showing the
map from part number to filename. In this case there are 6 parts which will be joined.

conjoin

(A code for sequentially appending Exodus II databases. Supercedes conex and conex2.)

(Version: 1.2.1) Modified: 2011/01/12

Part 1: ’adaptBox.e’

Part 2: ’adaptBox.e-s0002’

Part 3: ’adaptBox.e-s0003’

Part 4: ’adaptBox.e-s0004’

Part 5: ’adaptBox.e-s0005’

Part 6: ’adaptBox.e-s0006’

The next section of the output shows the output filename (adapt.e in this example), and gives a
summary of the output mesh showing the entity counts and the variable summary.

Output: ’adapt.e’

IO Word size is 8 bytes.

Title: Default Sierra Title

39

Number of coordinates per node = 3

Number of nodes = 151

Number of elements = 84

Number of element blocks = 1

Number of nodal point sets = 0

Number of element side sets = 2

Reading and Writing element connectivity & attributes

Wrote coordinate names...

Wrote coordinate information...

Found 7 global variables.

ExternalEnergy InternalEnergy KineticEnergy Momentum_x

Momentum_y Momentum_z TIMESTEP

Found 7 nodal variables.

displ_x displ_y displ_z vel_x vel_y

vel_z node_status

Found 7 element variables.

stress_xx stress_yy stress_zz stress_xy stress_yz

stress_zx elem_status

The last section shows the progress of transferring the transient data to the output mesh. For each
timestep, the output shows the part from which the data is being read and which timestep within
that part is being used. It also show how many elements are active in that part and an estimate
of how long it will take to finish transferring the data. Figures 5.2a to 5.2d show four views of the
output mesh.

Step 1/11, time 0.0000e+00 (Part 1/6, step 1) Active Elem: 4 [9%, Elapsed=0.0s, ETA=0.0s]

Step 2/11, time 5.0000e-01 (Part 1/6, step 2) Active Elem: 4 [18%, Elapsed=0.0s, ETA=0.0s]

Step 3/11, time 1.0000e+00 (Part 2/6, step 1) Active Elem: 11 [27%, Elapsed=0.0s, ETA=0.0s]

Step 4/11, time 1.2500e+00 (Part 3/6, step 1) Active Elem: 74 [36%, Elapsed=0.0s, ETA=0.0s]

Step 5/11, time 1.5000e+00 (Part 3/6, step 2) Active Elem: 74 [45%, Elapsed= <1s, ETA= <1s]

Step 6/11, time 1.7500e+00 (Part 4/6, step 1) Active Elem: 46 [55%, Elapsed= <1s, ETA= <1s]

Step 7/11, time 2.0000e+00 (Part 4/6, step 2) Active Elem: 46 [64%, Elapsed= <1s, ETA= <1s]

Step 8/11, time 2.5000e+00 (Part 4/6, step 3) Active Elem: 46 [73%, Elapsed= <1s, ETA= <1s]

Step 9/11, time 3.0000e+00 (Part 5/6, step 1) Active Elem: 18 [82%, Elapsed= <1s, ETA= <1s]

Step 10/11, time 3.5000e+00 (Part 6/6, step 1) Active Elem: 4 [91%, Elapsed= <1s, ETA= <1s]

Step 11/11, time 4.0000e+00 (Part 6/6, step 2) Active Elem: 4 [100%, Elapsed= <1s, ETA=0.0s]

******* END *******

5.4 Related Codes

Conjoin replaces the functionality of the conex[3] code. Conjoin provides a superset of the conex

functionality and is also much faster. Conjoin also supports nodeset and sideset variables and the

40

(a) Time 0.0 (b) Time 1.0

(c) Time 1.5 (d) Time 2.5

Figure 5.2: Example Output Mesh from Conjoin

naming of element blocks, nodesets, and sidesets which is not supported by conex. The input mesh
databases to Conex are required to have the exact same bulk data which limits its use for adaptive
analyses and other analyses which have varying numbers of active and inactive nodes and elements.
Conex is no longer actively supported.

41

Bibliography

[1] Larry A. Schoof and Victor R. Yarberry, “EXODUSII: A Finite Element Data Model,” SAND92-
2137, Sandia National Laboratories, Albuquerque, NM, September, 1994.1

[2] Gregory D. Sjaardema, “GJOIN: A Program for Merging Two or More GENESIS Databases,”
SAND92-2290, Sandia National Laboratories, Albuquerque, NM, December 1992.

[3] Gregory D. Sjaardema, “CONEX: A code for sequentially appending ExodusII databases,” un-
published internal communication, Sandia National Laboratories, Albuquerque, NM.

[4] Gary L. Hennigan, Matt M. St. John, Gregory D. Sjaardema, “NEM JOIN: Join the results
from a group of parallel ExodusII files,” unpublished internal communication, Sandia National
Laboratories, Albuquerque, NM.

[5] Gregory D. Sjaardema, “Overview of the Sandia National Laboratories Engineering Analysis
Code Access System,” SAND92-2292, Sandia National Laboratories, Albuquerque, NM, January
1993, Reprinted August 1994.

1This document is very out of date. A new document is being prepared and a draft of the current state is available
at http://jal.sandia.gov/SEACAS/Documentation/exodusII-new.pdf.

42

http://jal.sandia.gov/SEACAS/Documentation/exodusII-new.pdf

Distribution

1 0899 Technical Library, 9536 (1 electronic)

43

	Cover
	Title
	Introduction
	Exodus Concepts
	Meta Data and Bulk Data
	Database Sections

	Licensing

	Exodiff
	Introduction
	Difference Terminology

	Invoking Exodiff
	Optional Parameters
	Exodiff Command File Syntax

	Examples

	EPU
	Introduction
	Invoking EPU
	File Naming Convention
	Defaults and Requirements
	Options
	Basic invocation options
	Disk-related filename options
	Additional Options

	Example
	Related Codes

	EJoin
	Introduction
	Invoking EJoin
	Options

	Examples
	Related Codes

	Conjoin
	Introduction
	Invoking Conjoin
	Options

	Example
	Related Codes

	Bibliography
	Distribution

